Research Database
Displaying 1 - 10 of 10
Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity
Year: 2018
Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the…
Publication Type: Journal Article
Evidence for scale‐dependent topographic controls on wildfire spread
Year: 2018
Wildfire ecosystems are thought to be self‐regulated through pattern–process interactions between ignition frequency and location, and patterns of burned and recovering vegetation. Yet, recent increases in the frequency of large wildfires call into question the application of self‐organization theory to landscape resilience. Topography represents a stable bottom‐up template upon which fire interacts as both a physical and an ecological process. However, it is unclear how topographic control changes geographically and across spatial scales. We analyzed fire perimeter and topography data from…
Publication Type: Journal Article
Long-Term Effects of Fire on Vegetation Structure and Predicted Fire Behavior in Wyoming Big Sagebrush Ecosystems
Year: 2018
Fire historically occurred across the sagebrush steppe, but little is known about how patterns of post-fire fuel accumulation influence future fire in Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) communities. To quantify change in fuel composition and structure in intact sagebrush ecosystems, we sampled 17 years following prescribed fire in eight approximately 400 ha plots (4 burned, 4 unburned control) at Hart Mountain National Antelope Refuge, OR, USA. Fuels data were used to model potential fire behavior in burn and control plots across four environmental scenarios that…
Publication Type: Journal Article
The influence of fire history on soil nutrients and vegetation cover in mixed-severity fire regime forests of the eastern Olympic Peninsula, Washington, USA
Year: 2018
The rain shadow forests of the Olympic Peninsula exemplify a mixed-severity fire regime class in the midst of a highly productive landscape where spatial heterogeneity of fire severity may have significant implications for below and aboveground post-fire recovery. The purpose of this study was to quantify the impacts of wildfire on forest soil carbon (C) and nitrogen (N) pools and assess the relationship of pyrogenic carbon (PyC) to soil processes in this mixed-severity ecosystem. We established a 112-year fire chronosequence with nine similar forest stands ranging in time since lastfire (TSF…
Publication Type: Journal Article
Recovery of ectomycorrhizal fungus communities fifteen years after fuels reduction treatments in ponderosa pine forests of the Blue Mountains, Oregon
Year: 2018
Managers use restorative fire and thinning for ecological benefits and to convert fuel-heavy forests to fuel-lean landscapes that lessen the threat of stand-replacing wildfire. In this study, we evaluated the long-term impact of thinning and prescribed fire on soil biochemistry and the mycorrhizal fungi associated with ponderosa pine (Pinus ponderosa). Study sites were located in the Blue Mountains of northeastern Oregon where prescribed fire treatments implemented in 1998 and thinning treatments in 2000 included prescribed fire, mechanical thinning of forested areas, a combination of…
Publication Type: Journal Article
Pyro-Ecophysiology: Shifting the Paradigm of Live Wildland Fuel Research
Year: 2018
The most destructive wildland fires occur in mixtures of living and dead vegetation, yet very little attention has been given to the fundamental differences between factors that control their flammability. Historically, moisture content has been used to evaluate the relative flammability of live and dead fuels without considering major, unreported differences in the factors that control their variations across seasons and years. Physiological changes at both the leaf and whole plant level have the potential to explain ignition and fire behavior phenomena in live fuels that have been poorly…
Publication Type: Journal Article
Defining extreme wildfire events: Difficulties, challenges, and impacts
Year: 2018
Every year worldwide some extraordinary wildfires occur, overwhelming suppression capabilities, causing substantial damages, and often resulting in fatalities. Given their increasing frequency, there is a debate about how to address these wildfires with significant social impacts, but there is no agreement upon terminology to describe them. The concept of extreme wildfire event (EWE) has emerged to bring some coherence on this kind of events. It is increasingly used, often as a synonym of other terms related to wildfires of high intensity and size, but its definition remains elusive. The goal…
Publication Type: Journal Article
Embracing Complexity to Advance the Science of Wildland Fire Behavior
Year: 2018
Wildland fire behavior research has largely focused on the steady-state interactions between fuels and heat fluxes. Contemporary research is revealing new questions outside the bounds of this simplified approach. Here, we explore the complex interactions taking place beyond steady-state assumptions through acknowledging the manufactured separation of research disciplines in fire science and the dynamic interactions that unfold when these separations are removed. Through a series of examples spanning at least four research disciplines and three ranges of spatial scale, we illustrate that by…
Publication Type: Journal Article
Advancing the Science of Wildland Fire Dynamics Using Process-Based Models
Year: 2018
As scientists and managers seek to understand fire behavior in conditions that extend beyond the limits of our current empirical models and prior experiences, they will need new tools that foster a more mechanistic understanding of the processes driving fire dynamics and effects. Here we suggest that process-based models are powerful research tools that are useful for investigating a large number of emerging questions in wildland fire sciences. These models can play a particularly important role in advancing our understanding, in part, because they allow their users to evaluate the potential…
Publication Type: Journal Article
Fuel Treatments: Are we doing enough?
Year: 2018
Although a natural ecological process, wildfire in unhealthy forests can be uncharacteristically destructive. Fuel treatments—such as thinning, mowing, prescribed fire, or managed wildfire—can help reduce or redistribute the flammable fuels that threaten to carry and intensify fire. Using both field-tested data and computer simulations, Pacific Northwest Research Station scientists are addressing critical questions such as Are we treating enoughof the landscape to restore fire-adapted forests? Are fuel treatments effective at changing fire behavior? Together with land managers, fuel planners…
Publication Type: Report