Research Database
Displaying 81 - 100 of 141
Does increased forest protection correspond to higher fire severity in frequent-fire forests of the western United States?
Year: 2016
There is a widespread view among land managers and others that the protected status of many forestlands in the western United States corresponds with higher fire severity levels due to historical restrictions on logging that contribute to greater amounts of biomass and fuel loading in less intensively managed areas, particularly after decades of fire suppression. This view has led to recent proposals—both administrative and legislative—to reduce or eliminate forest protections and increase some forms of logging based on the belief that restrictions on active management have increased fire…
Publication Type: Journal Article
Post-fire logging produces minimal persistent impacts on understory vegetation in northeastern Oregon, USA
Year: 2016
Post-fire forest management commonly requires accepting some negative ecological impacts from management activities in order to achieve management objectives. Managers need to know, however,whether ecological impacts from post-fire management activities are transient or cause long-term ecosystem degradation. We studied the long-term response of understory vegetation to two post-fire loggingtreatments – commercial salvage logging with and without additional fuel reduction logging – on a long-term post-fire logging experiment in northeastern Oregon, USA. We sampled understory plant coverand…
Publication Type: Journal Article
Synthesis of Knowledge of Extreme Fire Behavior: Volume II for Fire Behavior Specialists, Researchers, and Meteorologists
Year: 2016
The National Wildfire Coordinating Group’s definition of extreme fire behavior indicates a level of fire behavior characteristics that ordinarily precludes methods of direct controlaction. One or more of the following is usually involved: high rate of spread, prolific crowning/ spotting, presence of fire whirls, and strong convection column. Predictability is difficultas such fires often influence their environment to some degree and behave erratically, sometimes dangerously. Alternate terms include “blow up” and “fire storm.” Fire managersexamining fires over the last 100 years have come to…
Publication Type: Report
The impact of aging on laboratory fire behaviour in masticated shrub fuelbeds of California and Oregon, USA
Year: 2016
Mastication of shrubs and small trees to reduce fire hazard has become a widespread management practice, yet many aspects of the fire behaviour of these unique woody fuelbeds remain poorly understood. To examine the effects of fuelbed aging on fire behaviour, we conducted laboratory burns with masticated Arctostaphylos spp. and Ceanothus spp. woody debris that ranged from 2 to 16 years since treatment. Masticated fuels that were 10 years or older burned with 18 to 29% shorter flame heights and 19% lower fireline intensities compared with the younger fuelbeds across three different fuel loads…
Publication Type: Journal Article
Fire and non-native grass invasion interact to suppress tree regeneration in temperate deciduous forests
Year: 2015
While many ecosystems depend on fire to maintain biodiversity, non-native plant invasions can enhance fire intensity, suppressing native species and generating a fire–invasion feedback. These dynamics have been observed in arid and semi-arid ecosystems, but fire–invasion interactions in temperate deciduous forests, where prescribed fires are often used as management tools to enhance native diversity, have rarely been investigated. Here we evaluated the effects of a widespread invasive grass on fire behaviour in eastern deciduous forests in the USA and the potential effects of fire and…
Publication Type: Journal Article
Winter grazing can reduce wildfire size, intensity and behaviour in a shrub-grassland
Year: 2015
An increase in mega-fires and wildfires is a global issue that is expected to become worse with climate change. Fuel treatments are often recommended to moderate behaviour and decrease severity of wildfires; however, the extensive nature of rangelands limits the use of many treatments. Dormant-season grazing has been suggested as a rangeland fuel treatment, but its effects on fire characteristics are generally unknown. We investigated the influence of dormant-season (winter) grazing by cattle (Bos taurus) on fuel characteristics, fire behaviour and area burned in Wyoming big sagebrush (…
Publication Type: Journal Article
Long-term effects of wildfire on greater sage-grouse - integrating population and ecosystem concepts for management in the Great Basin
Year: 2015
Greater sage-grouse (Centrocercus urophasianus; hereinafter, sage-grouse) are a sagebrush obligate species that has declined concomitantly with the loss and fragmentation of sagebrush ecosystems across most of its geographical range. The species currently is listed as a candidate for federal protection under the Endangered Species Act (ESA). Increasing wildfire frequency and changing climate frequently are identified as two environmental drivers that contribute to the decline of sage-grouse populations, yet few studies have rigorously quantified their effects on sage-grouse populations across…
Publication Type: Report
Experimental analysis of fire spread across a two-dimensional ridge under wind conditions
Year: 2015
Results from a laboratory-scale investigation of a fire spreading on the windward face of a triangular-section hill of variable shape with wind perpendicular to the ridgeline are reported. They confirm previous observations that the fire enlarges its lateral spread after reaching the ridgeline, entering the leeward face with a much wider front. Reference fire spread velocities were measured and analysed, putting in evidence the importance of the dynamic effect due to flow velocity and its associated horizontal-axis separation vortex strength without dependence on hill geometry. Similar…
Publication Type: Journal Article
Evaluating crown fire rate of spread predictions from physics-based models
Year: 2015
Modeling the behavior of crown fires is challenging due to the complex set of coupled processes that drive the characteristics of a spreading wildfire and the large range of spatial and temporal scales over which these processes occur. Detailed physics-based modeling approaches such as FIRETEC and the Wildland Urban Interface Fire Dynamics Simulator (WFDS) simulate fire behavior using computational fluid dynamics based methods to numerically solve the three-dimensional, time dependent, model equations that govern, to some approximation, the component physical processes and their interactions…
Publication Type: Journal Article
Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 1. Concepts for understanding and applying restoration
Year: 2015
Sagebrush steppe ecosystems in the United States currently occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) is a landscape-dependent bird that requires intact habitat and combinations of sagebrush and perennial grasses to exist. In addition, other sagebrush-obligate animals also have similar requirements and restoration of…
Publication Type: Report
Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 2. Landscape level restoration decisions
Year: 2015
Sagebrush steppe ecosystems in the United States currently (2015) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) is a landscape-dependent bird that requires intact habitat and combinations of sagebrush and perennial grasses to exist. In addition, other sagebrush-obligate animals also have similar requirements and restoration of…
Publication Type: Report
A Wildfire-relevant climatology of the convective environment of the United States
Year: 2015
Convective instability can influence the behaviour of large wildfires. Because wildfires modify the temperature and moisture of air in their plumes, instability calculations using ambient conditions may not accurately represent convective potential for some fire plumes. This study used the North American Regional Reanalysis to develop a climatology of the convective environment specifically tied to large fire events. The climatology is based on the period 1979–2009 and includes ambient convective available potential energy (CAPE) as well as values when surface air is warmed by 0.5, 1.0 or 2.0…
Publication Type: Journal Article
Simulated western spruce budworm defoliation reduces torching and crowning potential: a sensitivity analysis using a physics-based fire model
Year: 2014
The widespread, native defoliator western spruce budworm (Choristoneura occidentalis Freeman) reduces canopy fuels, which might affect the potential for surface fires to torch (ignite the crowns of individual trees) or crown (spread between tree crowns). However, the effects of defoliation on fire behaviour are poorly understood. We used a physics-based fire model to examine the effects of defoliation and three aspects of how the phenomenon is represented in the model (the spatial distribution of defoliation within tree crowns, potential branchwood drying and model resolution). Our…
Publication Type: Journal Article
The Effectiveness and Limitations of Fuel Modeling Using the Fire and Fuels Extension to the Forest Vegetation Simulator
Year: 2014
Fuel treatment effectiveness is often evaluated with fire behavior modeling systems that use fuel models to generate fire behavior outputs. How surface fuels are assigned, either using one of the 53 stylized fuel models or developing custom fuel models, can affect predicted fire behavior. We collected surface and canopy fuels data before and 1, 2, 5, and 8 years after prescribed fire treatments across 10 national forests in California. Two new methods of assigning fuel models within the Fire and FuelsExtension to the Forest Vegetation Simulator were evaluated. Field-based values for dead and…
Publication Type: Journal Article
Is fire exclusion in mountain big sagebrush communities prudent? Soil nutrient, plant diversity and arthropod response to burning
Year: 2014
Fire has largely been excluded from many mountain big sagebrush communities. Managers are reluctant to reintroduce fire, especially in communities without significant conifer encroachment, because of the decline in sagebrush-associated wildlife. Given this management direction, a better understanding of fire exclusion and burning effects is needed. We compared burned to unburned plots at six sites in Oregon. Soil nutrient availability generally increased with burning. Plant diversity increased with burning in the first post-burn year, but decreased by the third post-burn year. Burning altered…
Publication Type: Journal Article
Regional projections of the likelihood of very large wildland fires under a changing climate in the contiguous Western United States
Year: 2014
Seasonal changes in the climatic potential for very large wildfires (VLWF ≥ 50,000 ac ~ 20,234 ha) across the western contiguous United States are projected over the 21st century using generalized linear models and downscaled climate projections for two representative concentration pathways (RCPs). Significant (p ≤ 0.05) increases in VLWF probability for climate of the mid-21st century (2031–2060) relative to contemporary climate are found, for both RCP 4.5 and 8.5. The largest differences are in the Eastern Great Basin, Northern Rockies, Pacific Northwest, Rocky Mountains, and Southwest.…
Publication Type: Journal Article
Fire behavior in masticated fuels: A review
Year: 2014
Mastication is an increasingly common fuels treatment that redistributes “ladder” fuels to the forest floor to reduce vertical fuel continuity, crown fire potential, and fireline intensity, but fuel models do not exist for predicting fire behavior in these fuel types. Recent fires burning in masticated fuels have behaved in unexpected and contradictory ways, likely because the shredded, compact fuel created when trees and shrubs are masticated contains irregularly shaped pieces in mixtures quite different from other woody fuels. We review fuels characteristics and fire behavior in masticated…
Publication Type: Journal Article
Songbird response to wildfire in mixed-conifer forest in south-western Oregon
Year: 2014
We used 1 year of pre-fire and 4 years of post-fire data to quantify changes in the occurrence of birds at burned and unburned sites in a southern Oregon watershed after a 2500-ha wildfire. Our objectives were to identify bird species that increased or decreased as a result of this mixed-severity fire. Of the 27 species we investigated, we found evidence for fire-induced changes in the proportion of sites occupied by 13 species. Of these, most (8 species) were species that occurred at fewer sites after the fire than before. These changes were consistent with changes in vegetation composition…
Publication Type: Journal Article
Synthesis on crown fire behavior in conifer forests
Year: 2014
Mass media images of raging crown fires have affected how many people view their wildlands. Flames surge and leap dozens and even hundreds of feet into the air; planes zoom above the flames releasing streams of brightly colored retardant; and giant pyrocumulonimbus clouds tower over the landscape. No doubt, it’s dramatic lead story material. But, to many, and especially those in the wildland fire community, this is serious business. Tens of thousands of acres are severely burned in a single day; homes and lives are endangered; and ecosystems are changed dramatically for decades or longer.…
Publication Type: Journal
Vegetation Recovery in Slash-Pile Scars Following Conifer Removal in a Grassland-Restoration Experiment
Year: 2014
A principal challenge to restoring tree-invaded grasslands is the removal of woody biomass. Burning of slash piles to reduce woody residues from forest restoration practices generates intense, prolonged heating, with adverse effects on soils and vegetation. In this study, we examined vegetation responses to pile burning following tree removal from conifer-invaded grasslands of the Oregon Cascades. We quantified the longevity and magnitude of fire effects by comparing ground conditions and the cover and richness of plant species in burn-scar centers (higher-intensity fire) and edges (lower-…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 3
- 4
- 5
- 6
- 7
- …
- Next page
- Last page