Research Database
Displaying 61 - 80 of 106
Evaluating crown fire rate of spread predictions from physics-based models
Year: 2015
Modeling the behavior of crown fires is challenging due to the complex set of coupled processes that drive the characteristics of a spreading wildfire and the large range of spatial and temporal scales over which these processes occur. Detailed physics-based modeling approaches such as FIRETEC and the Wildland Urban Interface Fire Dynamics Simulator (WFDS) simulate fire behavior using computational fluid dynamics based methods to numerically solve the three-dimensional, time dependent, model equations that govern, to some approximation, the component physical processes and their interactions…
Publication Type: Journal Article
Tracking Progress: The Monitoring Process Used in Collaborative Forest Landscape Restoration Projects in the Pacific Northwest
Year: 2015
Several trends have emerged in recent years that affect the management of the National Forest System, particularly in the western U.S. One is the recognition of landscapes departed from a natural range of variation, especially with implications for wildfire management. Another trend is the economic decline in many rural communities of the western U.S., particularly those based on natural resource activities such as timber production. Finally, there is increasing acceptance of collaborative approaches to forest management. Collaborative approaches endeavor to increase mutual learning among…
Publication Type: Report
A Wildfire-relevant climatology of the convective environment of the United States
Year: 2015
Convective instability can influence the behaviour of large wildfires. Because wildfires modify the temperature and moisture of air in their plumes, instability calculations using ambient conditions may not accurately represent convective potential for some fire plumes. This study used the North American Regional Reanalysis to develop a climatology of the convective environment specifically tied to large fire events. The climatology is based on the period 1979–2009 and includes ambient convective available potential energy (CAPE) as well as values when surface air is warmed by 0.5, 1.0 or 2.0…
Publication Type: Journal Article
Social and economic monitoring for the Lakeview Stewardship Collaborative Forest Landscape Restoration Project
Year: 2015
The Fremont-Winema National Forest and the Lakeview Stewardship Group were awarded funding under the Collaborative Forest Landscape Restoration (CFLR) Program in 2012 for the 662,289 acre Lakeview Stewardship Project. The CFLR Program, administered by the U.S. Forest Service, seeks to increase restoration activities to improve the ecological conditions of forested landscapes while contributing to the social and economic well-being of communities located around national forests.The outcomes from CFLR project activities are monitored both through a standardized reporting framework established…
Publication Type: Report
Fire and non-native grass invasion interact to suppress tree regeneration in temperate deciduous forests
Year: 2015
While many ecosystems depend on fire to maintain biodiversity, non-native plant invasions can enhance fire intensity, suppressing native species and generating a fire–invasion feedback. These dynamics have been observed in arid and semi-arid ecosystems, but fire–invasion interactions in temperate deciduous forests, where prescribed fires are often used as management tools to enhance native diversity, have rarely been investigated. Here we evaluated the effects of a widespread invasive grass on fire behaviour in eastern deciduous forests in the USA and the potential effects of fire and…
Publication Type: Journal Article
The Effectiveness and Limitations of Fuel Modeling Using the Fire and Fuels Extension to the Forest Vegetation Simulator
Year: 2014
Fuel treatment effectiveness is often evaluated with fire behavior modeling systems that use fuel models to generate fire behavior outputs. How surface fuels are assigned, either using one of the 53 stylized fuel models or developing custom fuel models, can affect predicted fire behavior. We collected surface and canopy fuels data before and 1, 2, 5, and 8 years after prescribed fire treatments across 10 national forests in California. Two new methods of assigning fuel models within the Fire and FuelsExtension to the Forest Vegetation Simulator were evaluated. Field-based values for dead and…
Publication Type: Journal Article
Regional projections of the likelihood of very large wildland fires under a changing climate in the contiguous Western United States
Year: 2014
Seasonal changes in the climatic potential for very large wildfires (VLWF ≥ 50,000 ac ~ 20,234 ha) across the western contiguous United States are projected over the 21st century using generalized linear models and downscaled climate projections for two representative concentration pathways (RCPs). Significant (p ≤ 0.05) increases in VLWF probability for climate of the mid-21st century (2031–2060) relative to contemporary climate are found, for both RCP 4.5 and 8.5. The largest differences are in the Eastern Great Basin, Northern Rockies, Pacific Northwest, Rocky Mountains, and Southwest.…
Publication Type: Journal Article
Fire behavior in masticated fuels: A review
Year: 2014
Mastication is an increasingly common fuels treatment that redistributes “ladder” fuels to the forest floor to reduce vertical fuel continuity, crown fire potential, and fireline intensity, but fuel models do not exist for predicting fire behavior in these fuel types. Recent fires burning in masticated fuels have behaved in unexpected and contradictory ways, likely because the shredded, compact fuel created when trees and shrubs are masticated contains irregularly shaped pieces in mixtures quite different from other woody fuels. We review fuels characteristics and fire behavior in masticated…
Publication Type: Journal Article
Synthesis on crown fire behavior in conifer forests
Year: 2014
Mass media images of raging crown fires have affected how many people view their wildlands. Flames surge and leap dozens and even hundreds of feet into the air; planes zoom above the flames releasing streams of brightly colored retardant; and giant pyrocumulonimbus clouds tower over the landscape. No doubt, it’s dramatic lead story material. But, to many, and especially those in the wildland fire community, this is serious business. Tens of thousands of acres are severely burned in a single day; homes and lives are endangered; and ecosystems are changed dramatically for decades or longer.…
Publication Type: Journal
Stewarding Forests and Communities: Final Report of the Dry Forest Zone Project
Year: 2014
During the past two decades, land managers and community leaders in the West have adopted sustainable land management methods to make forests healthier, and to maintain profitable local businesses that are beneficial to their communities. However their efforts were often siloed and were not making a big enough impact to offset the vast threat of wildfire and the effects of climate change that are increasingly pressing the region. Nor were these singular efforts being presented to federal lawmakers or agencies that have the need and ability to implement policies to replicate these successes…
Publication Type: Report
Simulated western spruce budworm defoliation reduces torching and crowning potential: a sensitivity analysis using a physics-based fire model
Year: 2014
The widespread, native defoliator western spruce budworm (Choristoneura occidentalis Freeman) reduces canopy fuels, which might affect the potential for surface fires to torch (ignite the crowns of individual trees) or crown (spread between tree crowns). However, the effects of defoliation on fire behaviour are poorly understood. We used a physics-based fire model to examine the effects of defoliation and three aspects of how the phenomenon is represented in the model (the spatial distribution of defoliation within tree crowns, potential branchwood drying and model resolution). Our…
Publication Type: Journal Article
Dry Forest Zone Maps
Year: 2014
The Dry Forest Zone (DFZ) is a five-year project to address common natural resource-based economic development challenges through increased networking and capacity building at a regional scale. Sustainable Northwest leads this project in partnership with Wallowa Resources in northeastern Oregon, the Watershed Research and Training Center in northern California, and the Ecosystem Workforce Program at the University of Oregon. The central components of the DFZ strategy are: 1) To build strong local nonprofit organizations and collaborative processes to achieve forest and economic resilience, 2…
Publication Type: Map
Research and development supporting risk-based wildfire effects prediction for fuels and fire management: status and needs
Year: 2013
Wildland fire management has moved beyond a singular focus on suppression, calling for wildfire management for ecological benefit where no critical human assets are at risk. Processes causing direct effects and indirect, long-term ecosystem changes are complex and multidimensional. Robust risk-assessment tools are required that account for highly variable effects on multiple values-at-risk and balance competing objectives, to support decision making. Providing wildland fire managers with risk-analysis tools requires a broad scientific foundation in fire behaviour and effects prediction as…
Publication Type: Journal Article
Crown fire behavior characteristics and prediction in conifer forests: a state-of-knowledge synthesis
Year: 2013
Joint Fire Science Program (JFSP) project 09-S-03-1 was undertaken in response to JFSP Project Announcement No. FA-RFA09-0002 with respect to a synthesis on extreme fire behavior or more specifically a review and analysis of the literature dealing with certain features of crown fire behavior in conifer forests in the United States and adjacent regions of Canada. The key findings presented are organized along nine topical areas: types of crown fires; crown fire initiation; crown fire propagation; crown fire rate of spread; crown fire intensity and flame zone characteristics; crown fire area…
Publication Type: Report
Optimising fuel treatments over time and space
Year: 2013
Fuel treatments have been widely used as a tool to reduce catastrophic wildland fire risks in many forests around the world. However, it is a challenging task for forest managers to prioritise where, when and how to implement fuel treatments across a large forest landscape. In this study, an optimisation model was developed for long-term fuel management decisions at a landscape scale. Using a simulated annealing algorithm, the model optimises locations and timing of fuel treatments, while considering changes in forest dynamics over time, fire behaviour and spread, values at risk, and…
Publication Type: Journal Article
A Land Manager's Guide for Creating Fire-resistant Forests
Year: 2013
This publication provides an overview of how various silvicultural treatments affect fuel and fire behavior, and how to create fire-resistant forests. In properly treated, fire-resistant forests, fire intensity is reduced and overstory trees are more likely to survive than in untreated forests. Fire-resistant forests are not “fireproof” – under the right conditions, any forest will burn. Much of what we present here is pertinent to the drier forests of the Pacific Northwest, which have become extremely dense and fire prone.
Publication Type: Report
Is burn severity related to fire intensity? Observations from landscape scale remote sensing
Year: 2013
Biomass burning by wildland fires has significant ecological, social and economic impacts. Satellite remote sensing provides direct measurements of radiative energy released by the fire (i.e. fire intensity) and surrogate measures of ecological change due to the fire (i.e. fire or burn severity). Despite anecdotal observations causally linking fire intensity with severity, the nature of any relationship has not been examined over extended spatial scales. We compare fire intensities defined by Moderate Resolution Imaging Spectroradiometer Fire Radiative Power (MODIS FRP) products with Landsat-…
Publication Type: Journal Article
Effects of salvage logging and pile-and-burn on fuel loading, potential fire behavior, fuel consumption and emissions
Year: 2013
We used a combination of field measurements and simulation modelling to quantify the effects of salvage logging, and a combination of salvage logging and pile-and-burn fuel surface fuel treatment (treatment combination), on fuel loadings, fire behaviour, fuel consumption and pollutant emissions at three points in time: post-windstorm (before salvage logging), post-salvage logging and post-surface fuel treatment (pile-and-burn). Salvage logging and the treatment combination significantly reduced fuel loadings, fuelbed depth and smoke emissions. Salvage logging and the treatment combination…
Publication Type: Journal Article
Models for predicting fuel consumption in sage-brush-dominated ecosystems
Year: 2013
Fuel consumption predictions are necessary to accurately estimate or model fire effects, including pollutant emissions during wildland fires. Fuel and environmental measurements on a series of operational prescribed fires were used to develop empirical models for predicting fuel consumption in big sagebrush (Artemisia tridentata Nutt.) ecosystems. Models are proposed for predicting fuel consumption during prescribed fires in the fall and the spring. Total prefire fuel loading ranged from 5.3–23.6 Mg · ha−1; between 32% and 92% of the total loading was composed of live and dead big sagebrush.…
Publication Type: Journal Article
Capturing Fire: RxCadre Takes Fire Measurements to a Whole New Level
Year: 2013
Models of fire behavior and effects do not always make accurate predictions, and there is not enough systematically gathered data to validate them. To help advance fire behavior and fire effects model development, the Joint Fire Science Program is helping fund the RxCADRE, which is made up of scientists from the U.S. Forest Service and several universities who orchestrate and collect data on prescribed burns in the southeastern United States. The RxCADRE-prescribed burns are yielding a comprehensive dataset of fire behavior, fire effects, and smoke chemistry and dynamics, with measurements…
Publication Type: Report