Research Database
Displaying 1 - 20 of 92
Multifactor Change in Western U.S. Nighttime Fire Weather
Year: 2025
Reports from western U.S. firefighters that nighttime fire activity has been increasing during the spans of many of their careers have recently been confirmed by satellite measurements over the 2003–20 period. The hypothesis that increasing nighttime fire activity has been caused by increased nighttime vapor pressure deficit (VPD) is consistent with recent documentation of positive, 40-yr trends in nighttime VPD over the western United States. However, other meteorological conditions such as near-surface wind speed and planetary boundary layer depth also impact fire behavior and exhibit…
Publication Type: Journal Article
Insights Into Nature-Based Climate Solutions: Managing Forests for Climate Resilience and Carbon Stability
Year: 2025
Successful implementation of forest management as a nature-based climate solution is dependent on the durability of management-induced changes in forest carbon storage and sequestration. As forests face unprecedented stability risks in the face of ongoing climate change, much remains unknown regarding how management will impact forest stability, or how interactions with climate might shift the response of forests to management across spatiotemporal scales. Here, we used a process-based model to simulate multidecadal projections of forest dynamics in response to changes in management and…
Publication Type: Journal Article
Global Synthesis of Quantification of Fire Behaviour Characteristics in Forests and Shrublands: Recent Progress
Year: 2025
Purpose of ReviewThe behaviour of wildland fires, namely their free spreading nature, destructive energy fluxes and hazardous environment, make it a phenomenon difficult to study. Field experimental studies and occasional wildfire observations underpin our understanding of fire behaviour. We aim to present a global synthesis of field-based studies in forest and shrublands fuel types published since 2003 with a focus on the most commonly measured fire behaviour attributes, namely rate of fire spread, ignition and spread sustainability, flame characteristics, fuel consumption…
Publication Type: Journal Article
Trees in Fire-Maintained Forests Have Similar Growth Responses to Drought, but Greater Stomatal Conductance Than Trees in Fire-Excluded Forests
Year: 2025
In the western US, increased tree density in dry conifer forests from fire exclusion has caused tree growth declines, which is being compounded by hotter multi-year droughts. The reintroduction of frequent, low-severity wildfire reduces forest density by removing fire-intolerant trees, which can reduce competition for water and improve tree growth response to drought. We assessed how lower forest density following frequent, low-severity wildfire affected tree stomatal conductance and growth response to drought by coring and measuring competition surrounding ponderosa pines (Pinus…
Publication Type: Journal Article
Influence of Time‐Averaging of Climate Data on Estimates of Atmospheric Vapor Pressure Deficit and Inferred Relationships With Wildfire Area in the Western United States
Year: 2025
Vapor pressure deficit (VPD) is a driver of evaporative demand and correlates strongly with wildfire extent in the western United States (WUS). Vapor pressure deficit is the difference between saturation vapor pressure (es) and actual vapor pressure (ea). Because es increases nonlinearly with temperature, calculations of time‐averaged VPD vary depending on the frequency of temperature measurements and how ea is calculated, potentially limiting our understanding of fire‐climate relationships. We calculate eight versions of monthly VPD across the WUS and assess their differences. Monthly VPDs…
Publication Type: Journal Article
Long-term influence of prescribed burning on subsequent wildfire in an old-growth coast redwood forest
Year: 2025
Background: Prescribed burning is an effective tool for reducing fuels in many forest types, yet there have been few opportunities to study forest resilience to wildfire in areas previously treated. In 2020, a large-scale high-intensity wildfire burned through an old-growth coast redwood (Sequoia sempervirens) forest with a mixed land management history, providing a rare opportunity to compare early post-wildfire data between areas with and without previous application of prescribed burning. The purpose of this study was to analyze the differences between these two treatments in…
Publication Type: Journal Article
Perspectives: Six opportunities to improve understanding of fuel treatment longevity in historically frequent-fire forests
Year: 2025
Fuel-reduction and restoration treatments (“treatments”) are conducted extensively in dry and historically frequent-fire forests of interior western North America (“dry forests”) to reduce potential for uncharacteristically severe wildfire. However, limited understanding of treatment longevity and long-term treatment effects creates potential for inefficient treatment maintenance and inaccurate forecasting of wildfire behavior. In this perspectives paper, we briefly summarize current understanding of long-term effects of three common treatment types (burn-only, thin-only, and thin-plus-burn)…
Publication Type: Journal Article
Mechanical mastication and prescribed burning reduce forest fuels and alter stand structure in dry coniferous forests
Year: 2025
Mechanical thinning is often prescribed in dry coniferous forests to reduce stand density, ladder fuels, and canopy fuels before using prescribed burning to manage surface fuels. Mechanical mastication is a tool for thinning forests where commercial thinning is not viable. We evaluated the effects of mastication-based thinning – with and without subsequent prescribed burning – on forest structure and fuels in dry coniferous forests of the Pacific Northwest, USA. We thinned stands by masticating small-diameter trees and depositing the resulting slash on the forest floor. We then used…
Publication Type: Journal Article
Wildland fire entrainment: The missing link between wildland fire and its environment
Year: 2025
Wildfires are growing in destructive power, and accurately predicting the spread and intensity of wildland fire is essential for managing ecological and societal impacts. No current operational models used for fire behavior prediction resolve critical fire-atmospheric coupling or nonlocal influences of the fire environment, rendering them inadequate in accounting for the range of wildland fire behavior scenarios under increasingly novel fuel and climate conditions. Here, we present a new perspective on a dominant fire-atmospheric feedback mechanism, which we term wildland fire entrainment (…
Publication Type: Journal Article
Small-scale fire refugia increase soil bacterial and fungal richness and increase community cohesion nine years after fire
Year: 2025
Small-scale variation in wildfire behavior may cause large differences in belowground bacterial and fungal communities with consequences for belowground microbial diversity, community assembly, and function. Here we combine pre-fire, active-fire, and post-wildfire measurements in a mixed-conifer forest to identify how fine-scale wildfire behavior, unburned refugia, and aboveground forest structure are associated with belowground bacterial and fungal communities nine years after wildfire. We used fine-scale mapping of small (0.9–172.6 m2) refugia to sample soil-associated burned and…
Publication Type: Journal Article
Reliability of satellite-based vegetation maps for planning wildfire-fuel treatments in shrub steppe: Inferences from two contrasting national parks
Year: 2025
Protecting habitat threatened by increasing wildfire size and frequency requires identifying the spatial intersection of wildfire behavior and ecological conditions that favor positive management outcomes. In the perennial sagebrush steppe of Western North America, invasions by fire-prone annual grasses are a key concern, and management of them requires reliable maps of vegetation cover, fuels, and wildfire behavior. We compared commonly used, publicly available vegetation cover and fuels maps, specifically the Rangeland Analysis Platform (RAP) and LANDFIRE, with field-based assessments at…
Publication Type: Journal Article
Long-term tree population growth can predict woody encroachment patterns
Year: 2025
Recent increases in woody plant density in dryland ecosystems—or “woody encroachment”—around the world are often attributed to land-use changes such as increased livestock grazing and wildfire suppression or to global environmental trends (e.g., increasing atmospheric carbon dioxide). While such changes have undoubtedly impacted ecosystem structure and function, the evidence linking them to woody encroachment is mixed, and the underlying processes are not fully understood. To clarify the role of demographic processes in changing woody plant abundance, we conducted a meta-analysis of tree age…
Publication Type: Journal Article
Short-term impacts of operational fuel treatments on modelled fire behaviour and effects in seasonally dry forests of British Columbia, Canada
Year: 2025
Background: In response to increasing risk of extreme wildfire across western North America, forest managers are proactively implementing fuel treatments.Aims: We assessed the efficacy of alternative combinations of thinning, pruning and residue fuel management to mitigate potential fire behaviour and effects in seasonally dry forests of interior British Columbia, Canada.Methods: Across five community forests, we measured stand attributes before and after fuel treatments in 2021 and 2022, then modelled fire behaviour and effects using the…
Publication Type: Journal Article
Temporal and spatial pattern analysis of escaped prescribed fires in California from 1991 to 2020
Year: 2025
Background: Prescribed fires play a critical role in reducing the intensity and severity of future wildfires by systematically and widely consuming accumulated vegetation fuel. While the current probability of prescribed fire escape in the United States stands very low, their consequential impact, particularly the large wildfires they cause, raises substantial concerns. The most direct way of understanding this trade-off between wildfire risk reduction and prescribed fire escapes is to explore patterns in the historical prescribed fire records. This study investigates the spatiotemporal…
Publication Type: Journal Article
Review of thermal behaviour of firebrands and their role in fuel bed and structure ignition
Year: 2025
Firebrands or embers are a crucial phenomenon in wildfire behaviour. Firebrands – small, burning or smouldering pieces of wood or other flammable materials – can be carried by wind considerable distances, leading to ignition of new fires ahead of the main fire front. This process, called spotting, significantly contributes to the rapid spread of fires, particularly in wildland–urban interface (WUI) areas. Spot fires pose a severe threat to people and properties. Better understanding the thermal behaviour of firebrands and their ability to ignite various natural fuel beds and structural…
Publication Type: Journal Article
Quantifying Western US tree carbon stocks and sequestration from fires
Year: 2025
Background: Forest ecosystems function as the largest terrestrial carbon sink globally. In the Western US, fires play a crucial role in modifying forest carbon storage, sequestration capacity, and the transfer of carbon from live to dead carbon pools. We utilized remeasurements of more than 700,000 trees from 24,000 locations from the US Department of Agriculture Forest Service’s Forest Inventory and Analysis program (FIA) and incorporated supplementary information on wildfires from the Monitoring Trends in Burn Severity dataset. These datasets allowed us to develop models that examined the…
Publication Type: Journal Article
Methods to assess fire-induced tree mortality: review of fire behaviour proxy and real fire experiments
Year: 2025
Background: The increased interest in why and how trees die from fire has led to several syntheses of the potential mechanisms of fire-induced tree mortality. However, these generally neglect to consider experimental methods used to simulate fire behaviour conditions.Aims: To describe, evaluate the appropriateness of and provide a historical timeline of the different approaches that have been used to simulate fire behaviour in fire-induced tree mortality studies.Methods: We conducted a historical review of the different actual and fire proxy methods that have been used to…
Publication Type: Journal Article
Repeated fuel treatments fall short of fire-adapted regeneration objectives in a Sierra Nevada mixed conifer forest, USA
Year: 2024
Fire exclusion over the last two centuries has driven a significant fire deficit in the forests of western North America, leading to widespread changes in the composition and structure of these historically fire-adapted ecosystems. Fuel treatments have been increasingly applied over the last few decades to mitigate fire hazard, yet it is unclear whether these fuel-focused treatments restore the fire-adapted conditions and species that will allow forests to persist into the future. A vital prerequisite of restoring fire-adaptedness is ongoing establishment of fire-tolerant tree species, and…
Publication Type: Journal Article
State of Wildfires 2023–2024
Year: 2024
Climate change contributes to the increased frequency and intensity of wildfires globally, with significant impacts on society and the environment. However, our understanding of the global distribution of extreme fires remains skewed, primarily influenced by media coverage and regionalised research efforts. This inaugural State of Wildfires report systematically analyses fire activity worldwide, identifying extreme events from the March 2023–February 2024 fire season. We assess the causes, predictability, and attribution of these events to climate change and land use and forecast future risks…
Publication Type: Journal Article
Fuel constraints, not fire weather conditions, limit fire behavior in reburned boreal forests
Year: 2024
Fire frequency in boreal forests has increased via longer burning seasons, drier conditions, and higher temperatures. However, fires have historically self-regulated via fuel limitations, mediating the effects of changes in climate and fire weather. Early post-fire boreal forests (10–15 years postfire) are often dominated by mixed conifer-broadleaf or broadleaf regeneration, considered less flammable due to the higher foliar moisture of broadleaf trees and shrubs compared to their more intact conifer counterparts. However, the strength of self-regulation in the context of changing fire…
Publication Type: Journal Article