Research Database
Displaying 21 - 40 of 131
Forest structural complexity and ignition pattern influence simulated prescribed fire effects
Year: 2024
Forest structural characteristics, the burning environment, and the choice of ignition pattern each influence prescribed fire behaviors and resulting fire effects; however, few studies examine the influences and interactions of these factors. Understanding how interactions among these drivers can influence prescribed fire behavior and effects is crucial for executing prescribed fires that can safely and effectively meet management objectives. To analyze the interactions between the fuels complex and ignition patterns, we used FIRETEC, a three-dimensional computational fluid dynamics fire…
Publication Type: Journal Article
Generating fuel consumption maps on prescribed fire experiments from airborne laser scanning
Year: 2024
Background. Characterisation of fuel consumption provides critical insights into fire behaviour, effects, and emissions. Stand-replacing prescribed fire experiments in central Utah offered an opportunity to generate consumption estimates in coordination with other research efforts. Aims. We sought to generate fuel consumption maps using pre- and post-fire airborne laser scanning (ALS) and ground measurements and to test the spatial transferability of the ALSderived fuel models. Methods. Using random forest (RF), we empirically modelled fuel load and estimated consumption from pre-…
Publication Type: Journal Article
Montane springs provide regeneration refugia after high-severity wildfire
Year: 2024
In the mountainous regions of the Western United States, increasing wildfire activity and climate change are putting forests at risk of regeneration failure and conversion to non-forests. During periods with unfavorable climatic conditions, locations that are suitable for post-fire tree regeneration (regeneration refugia) may be essential for forest recovery. These refugia could provide scattered islands of recovering forest from which broader forest recovery may be facilitated. Spring ecosystems provide cool and wet microsites relative to the surrounding landscape and may act as regeneration…
Publication Type: Journal Article
Pixels to pyrometrics: UAS-derived infrared imagery to evaluate and monitor prescribed fire behaviour and effects
Year: 2024
Background: Prescribed fire is vital for fuel reduction and ecological restoration, but the effectiveness and fine-scale interactions are poorly understood. Aims: We developed methods for processing uncrewed aircraft systems (UAS) imagery into spatially explicit pyrometrics, including measurements of fuel consumption, rate of spread, and residence time to quantitatively measure three prescribed fires. Methods: We collected infrared (IR) imagery continuously (0.2 Hz) over prescribed burns and one experimental calibration burn, capturing…
Publication Type: Journal Article
Variability in weather and site properties affect fuel and fire behavior following fuel treatments in semiarid sagebrush-steppe
Year: 2024
Fuel-treatments targeting shrubs and fire-prone exotic annual grasses (EAGs) are increasingly used to mitigate increased wildfire risks in arid and semiarid environments, and understanding their response to natural factors is needed for effective landscape management. Using field-data collected over four years from fuel-break treatments in semiarid sagebrush-steppe, we asked 1) how the outcomes of EAG and sagebrush fuel treatments varied with site biophysical properties, climate, and weather, and 2) how predictions of fire behavior using the Fuel Characteristic Classification System fire…
Publication Type: Journal Article
Soil microbiome feedbacks during disturbance-driven forest ecosystem conversion
Year: 2024
Disturbances cause rapid changes to forests, with different disturbance types and severities creating unique ecosystem trajectories that can impact the underlying soil microbiome. Pile burning—the combustion of logging residue on the forest floor—is a common fuel reduction practice that can have impacts on forest soils analogous to those following high-severity wildfire. Further, pile burning following clear-cut harvesting can create persistent openings dominated by nonwoody plants surrounded by dense regenerating conifer forest. A paired 60-year chronosequence of burn scar openings and…
Publication Type: Journal Article
Long-term sensitivity of ponderosa pine axial resin ducts to harvesting and prescribed burning
Year: 2024
Forest restoration treatments primarily aimed at reducing fuel load and preventing high-severity wildfires can also influence resilience to other disturbances. Many pine forests in temperate regions are subject to tree-killing bark beetle outbreaks (e.g., Dendroctonus, Ips), whose frequency and intensity are expected to increase with future climatic changes. Restoration treatments have the potential to increase resistance to bark beetle attacks, yet the underlying mechanisms of this response are still unclear. While the effect of forest restoration treatments on tree growth…
Publication Type: Journal Article
Carbon, climate, and natural disturbance: a review of mechanisms, challenges, and tools for understanding forest carbon stability in an uncertain future
Year: 2024
In this review, we discuss current research on forest carbon risk from natural disturbance under climate change for the United States, with emphasis on advancements in analytical mapping and modeling tools that have potential to drive research for managing future long-term stability of forest carbon. As a natural mechanism for carbon storage, forests are a critical component of meeting climate mitigation strategies designed to combat anthropogenic emissions. Forests consist of long-lived organisms (trees) that can store carbon for centuries or more. However, trees have finite lifespans, and…
Publication Type: Journal Article
Fire intensity effects on serotinous seed survival
Year: 2024
BackgroundIn fire-prone environments, some species store their seeds in canopy cones (serotiny), which provides seeds protection from the passage of fire before stimulating seed release. However, the capacity of serotinous cones to protect seeds under high intensity fire is uncertain. Beyond simply “high” versus “low” fire intensity or severity, we must understand the influence of the specific characteristics of fire intensity—heat flux, exposure duration, and their dynamics—on serotinous seed survival. In this study, we tested serotinous seed survival under transient levels of…
Publication Type: Journal Article
Disentangling drivers of annual grass invasion: Abiotic susceptibility vs. fire-induced conversion to cheatgrass dominance in the sagebrush biome
Year: 2024
Invasive annual grasses are often facilitated by fire, yet they can become ecologically dominant in susceptible locations even in the absence of fire. We used an extensive vegetation plot database to model susceptibility to the invasive annual grass cheatgrass (Bromus tectorum L.) in the sagebrush biome as a function of climate and soil water availability variables. We built random forest models predicting cheatgrass presence or dominance (>15 % relative cover) under unburned (37,219 plots) and burned conditions (6340 plots). We mapped predicted probability of cheatgrass…
Publication Type: Journal Article
Leveraging the next generation of spaceborne Earth observations for fuel monitoring and wildland fire management
Year: 2024
Managing fuels is a key strategy for mitigating the negative impacts of wildfires on people and the environment. The use of satellite-based Earth observation data has become an important tool for managers to optimize fuel treatment planning at regional scales. Fortunately, several new sensors have been launched in the last few years, providing novel opportunities to enhance fuel characterization. Herein, we summarize the potential improvements in fuel characterization at large scale (i.e., hundreds to thousands of km2) with high spatial and spectral resolution arising from the use of new…
Publication Type: Journal Article
How are long-term stand structure, fuel profiles, and potential fire behavior affected by fuel treatment type and intensity in Interior Pacific Northwest forests?
Year: 2024
Fuel treatments are commonly applied to increase resilience to wildfire in dry and historically frequent-fire forests of western North America. The long-term effects of fuel treatments on forest structure, fuel profiles (amount and configuration of fuels), and potential wildfire behavior are not well known relative to short-term effects. Additionally, long-term treatment effects on the development of stand structure and fuel profiles have rarely been compared to the long-term effects of pre-treatment conditions, treatment intensity, and site productivity. In this study, we addressed these…
Publication Type: Journal Article
Landsat assessment of variable spectral recovery linked to post-fire forest structure in dry sub-boreal forests
Year: 2024
Forest disturbances such as wildfires can dramatically alter forest structure and composition, increasing the likelihood of ecosystem changes. Up-to-date and accurate measures of post-disturbance forest recovery in managed forests are critical, particularly for silvicultural planning. Measuring the live and dead vegetation post-fire is challenging because areas impacted by wildfire may be remote, difficult to access, and/or dangerous to survey. The difficulties of post-fire monitoring are compounded by the global increase in the frequency and severity of disturbances, as expansion of…
Publication Type: Journal Article
Drivers and Impacts of the Record-Breaking 2023 Wildfire Season in Canada
Year: 2024
The 2023 wildfire season in Canada was unprecedented in its scale and intensity, spanning from mid-April to late October and across much of the forested regions of Canada. Here, we summarize the main causes and impacts of this exceptional season. The record-breaking total area burned (~15 Mha)can be attributed to several environmental factors that converged early in the season: early snowmelt, multi annual drought conditions in western Canada, and the rapid transition to drought in eastern Canada. Anthropogenic climate change enabled sustained extreme fire weather conditions, as the meanMay–…
Publication Type: Journal Article
Road fragment edges enhance wildfire incidence and intensity, while suppressing global burned area
Year: 2024
Landscape fragmentation is statistically correlated with both increases and decreases in wildfire burned area (BA). These different directions-of-impact are not mechanistically understood. Here, road density, a land fragmentation proxy, is implemented in a CMIP6 coupled land-fire model, to represent fragmentation edge effects on fire-relevant environmental variables. Fragmentation caused modelled BA changes of over ±10% in 16% of [0.5°] grid-cells. On average, more fragmentation decreased net BA globally (−1.5%), as estimated empirically. However, in recently-deforested tropical areas,…
Publication Type: Journal Article
Review of fuel treatment effects on fuels, fire behavior and ecological resilience in sagebrush (Artemisia spp.) ecosystems in the Western U.S.
Year: 2024
BackgroundSagebrush ecosystems are experiencing increases in wildfire extent and severity. Most research on vegetation treatments that reduce fuels and fire risk has been short term (2–3 years) and focused on ecological responses. We review causes of altered fire regimes and summarize literature on the longer-term effects of treatments that modify (1) shrub fuels, (2) pinyon and juniper canopy fuels, and (3) fine herbaceous fuels. We describe treatment effects on fuels, fire behavior, ecological resilience, and resistance to invasive annual grasses.ResultsOur review revealed tradeoffs in…
Publication Type: Journal Article
Prefire Drought Intensity Drives Postfire Recovery and Mortality in Pinus monticola and Pseudotsuga menziesii Saplings
Year: 2024
Increasing frequency of droughts and wildfire are sparking concerns that these compounded disturbance events are pushing forested ecosystems beyond recovery. An improved understanding of how compounded events affect tree physiology and mortality is needed given the reliance of fire management planning on accurate estimates of postfire tree mortality. In this study, we use a toxicological dose-response approach to quantify the impact of variable-intensity drought and fire on the physiology and mortality of Pinus monticola and Pseudotsuga menziesii saplings. We show that the…
Publication Type: Journal Article
Hydrometeorology-wildfire relationship analysis based on a wildfire bivariate probabilistic framework in different ecoregions of the continental United States
Year: 2024
Wildfires are a natural part of the ecosystem in the U.S.. It is vital to classify wildfires using a comprehensive approach that simultaneously considers wildfire activity (the number of wildfires) and burned area. On this basis, the influence of hydrometeorological variables on wildfires can be further analyzed. Therefore, this study first classified wildfire types using a wildfire bivariate probability framework. Then, by considering six hydrometeorological variables, the dominant hydrometeorological variables for different wildfire types in 17 ecoregions of the United States were…
Publication Type: Journal Article
Estimating masticated and cone fuel loads using the Photoload method
Year: 2024
BackgroundRecognizing the complexity and varied nature of forest fuelbeds is crucial in understanding fire behavior and effects on the landscape. While current modeling efforts often consider fine and coarse woody debris surface fuel loads, those options do not always provide the most complete description of the fuelbeds. Both masticated fuels and cones can be a significant part of the fuelbed, with the potential to influence fire behavior and effects, but they are not currently captured in planar intersect methods or Photoload fuel sampling methodology. Cones are prevalent in most forested…
Publication Type: Journal Article
Stream chemical response is mediated by hydrologic connectivity and fire severity in a Pacific Northwest forest
Year: 2024
Large-scale wildfires are becoming increasingly common in the wet forests of the Pacific Northwest (USA), with predicted increases in fire prevalence under future climate scenarios. Wildfires can alter streamflow response to precipitation and mobilize water quality constituents, which pose a risk to aquatic ecosystems and downstream drinking water treatment. Research often focuses on the impacts of high-severity wildfires, with stream biogeochemical responses to low- and mixed-severity fires often understudied, particularly during seasonal shifts in hydrologic connectivity between hillslopes…
Publication Type: Journal Article