Research Database
Displaying 1 - 6 of 6
Extreme fire spread events and area burned under recent and future climate in the western USA
Year: 2022
Aim: Wildfire activity in recent years is notable not only for an expansion of total area burned but also for large, single-day fire spread events that pose challenges to ecological systems and human communities. Our objectives were to gain new insight into the relationships between extreme single-day fire spread events, annual area burned, and fire season climate and to predict changes under future warming. Location: Fire-prone regions of the western USA. Time period: 2002–2020; a future +2°C scenario. Methods: We used a satellite-derived dataset of daily fire spread events and gridded…
Publication Type: Journal Article
The complexity of biological disturbance agents, fuels heterogeneity, and fire in coniferous forests of the western United States
Year: 2022
Forest biological disturbance agents (BDAs) are insects, pathogens, and parasitic plants that affect tree decline, mortality, and forest ecosystems processes. BDAs are commonly thought to increase the likelihood and severity of fire by converting live standing trees to more flammable, dead and downed fuel. However, recent research indicates that BDAs do not necessarily increase, and can reduce, the likelihood or severity of fire. This has led to confusion regarding the role of BDAs in influencing fuels and fire in fire-prone western United States forests. Here, we review the existing…
Publication Type: Journal Article
Changes in fire behavior caused by fire exclusion and fuel build-up vary with topography in California montane forests, USA
Year: 2022
Wildfire sizes and proportions burned with high severity effects are increasing in seasonally dry forests, especially in the western USA. A critical need in efforts to restore or maintain these forest ecosystems is to determine where fuel build-up caused by fire exclusion reaches thresholds that compromise resilience to fire. Empirical studies identifying drivers of fire severity patterns in actual wildfires can be confounded by co-variation of vegetation and topography and the stochastic effects of weather and rarely consider long-term changes in fuel caused by fire exclusion. To overcome…
Publication Type: Journal Article
Modern Pyromes: Biogeographical Patterns of Fire Characteristics across the Contiguous United States
Year: 2022
In recent decades, wildfires in many areas of the United States (U.S.) have become larger and more frequent with increasing anthropogenic pressure, including interactions between climate, land-use change, and human ignitions. We aimed to characterize the spatiotemporal patterns of contemporary fire characteristics across the contiguous United States (CONUS). We derived fire variables based on frequency, fire radiative power (FRP), event size, burned area, and season length from satellite-derived fire products and a government records database on a 50 km grid (1984–2020). We used k-means…
Publication Type: Journal Article
Frequency of disturbance mitigates high-severity fire in the Lake Tahoe Basin, California and Nevada
Year: 2022
Because of past land use changes and changing climate, forests are moving outside of their historical range of variation. As fires become more severe, forest managers are searching for strategies that can restore forest health and reduce fire risk. However, management activities are only one part of a suite of disturbance vectors that shape forest conditions. To account for the range of disturbance intensities and disturbance types (wildfire, bark beetles, and management), we developed a disturbance return interval (DRI) that represents the average return period for any disturbance, human or…
Publication Type: Journal Article
Future climate risks from stress, insects and fire across US forests
Year: 2022
Forests are currently a substantial carbon sink globally. Many climate change mitigation strategies leverage forest preservation and expansion, but rely on forests storing carbon for decades to centuries. Yet climate-driven disturbances pose critical risks to the long-term stability of forest carbon. We quantify the climate drivers that influence wildfire and climate stress-driven tree mortality, including a separate insect-driven tree mortality, for the contiguous United States for current (1984–2018) and project these future disturbance risks over the 21st century. We find that current…
Publication Type: Journal Article