Research Database
Displaying 61 - 80 of 105
Synthesis of Knowledge of Extreme Fire Behavior: Volume II for Fire Behavior Specialists, Researchers, and Meteorologists
Year: 2016
The National Wildfire Coordinating Group’s definition of extreme fire behavior indicates a level of fire behavior characteristics that ordinarily precludes methods of direct controlaction. One or more of the following is usually involved: high rate of spread, prolific crowning/ spotting, presence of fire whirls, and strong convection column. Predictability is difficultas such fires often influence their environment to some degree and behave erratically, sometimes dangerously. Alternate terms include “blow up” and “fire storm.” Fire managersexamining fires over the last 100 years have come to…
Publication Type: Report
The impact of aging on laboratory fire behaviour in masticated shrub fuelbeds of California and Oregon, USA
Year: 2016
Mastication of shrubs and small trees to reduce fire hazard has become a widespread management practice, yet many aspects of the fire behaviour of these unique woody fuelbeds remain poorly understood. To examine the effects of fuelbed aging on fire behaviour, we conducted laboratory burns with masticated Arctostaphylos spp. and Ceanothus spp. woody debris that ranged from 2 to 16 years since treatment. Masticated fuels that were 10 years or older burned with 18 to 29% shorter flame heights and 19% lower fireline intensities compared with the younger fuelbeds across three different fuel loads…
Publication Type: Journal Article
Winter grazing can reduce wildfire size, intensity and behaviour in a shrub-grassland
Year: 2015
An increase in mega-fires and wildfires is a global issue that is expected to become worse with climate change. Fuel treatments are often recommended to moderate behaviour and decrease severity of wildfires; however, the extensive nature of rangelands limits the use of many treatments. Dormant-season grazing has been suggested as a rangeland fuel treatment, but its effects on fire characteristics are generally unknown. We investigated the influence of dormant-season (winter) grazing by cattle (Bos taurus) on fuel characteristics, fire behaviour and area burned in Wyoming big sagebrush (…
Publication Type: Journal Article
Experimental analysis of fire spread across a two-dimensional ridge under wind conditions
Year: 2015
Results from a laboratory-scale investigation of a fire spreading on the windward face of a triangular-section hill of variable shape with wind perpendicular to the ridgeline are reported. They confirm previous observations that the fire enlarges its lateral spread after reaching the ridgeline, entering the leeward face with a much wider front. Reference fire spread velocities were measured and analysed, putting in evidence the importance of the dynamic effect due to flow velocity and its associated horizontal-axis separation vortex strength without dependence on hill geometry. Similar…
Publication Type: Journal Article
Evaluating crown fire rate of spread predictions from physics-based models
Year: 2015
Modeling the behavior of crown fires is challenging due to the complex set of coupled processes that drive the characteristics of a spreading wildfire and the large range of spatial and temporal scales over which these processes occur. Detailed physics-based modeling approaches such as FIRETEC and the Wildland Urban Interface Fire Dynamics Simulator (WFDS) simulate fire behavior using computational fluid dynamics based methods to numerically solve the three-dimensional, time dependent, model equations that govern, to some approximation, the component physical processes and their interactions…
Publication Type: Journal Article
A Wildfire-relevant climatology of the convective environment of the United States
Year: 2015
Convective instability can influence the behaviour of large wildfires. Because wildfires modify the temperature and moisture of air in their plumes, instability calculations using ambient conditions may not accurately represent convective potential for some fire plumes. This study used the North American Regional Reanalysis to develop a climatology of the convective environment specifically tied to large fire events. The climatology is based on the period 1979–2009 and includes ambient convective available potential energy (CAPE) as well as values when surface air is warmed by 0.5, 1.0 or 2.0…
Publication Type: Journal Article
Fire and non-native grass invasion interact to suppress tree regeneration in temperate deciduous forests
Year: 2015
While many ecosystems depend on fire to maintain biodiversity, non-native plant invasions can enhance fire intensity, suppressing native species and generating a fire–invasion feedback. These dynamics have been observed in arid and semi-arid ecosystems, but fire–invasion interactions in temperate deciduous forests, where prescribed fires are often used as management tools to enhance native diversity, have rarely been investigated. Here we evaluated the effects of a widespread invasive grass on fire behaviour in eastern deciduous forests in the USA and the potential effects of fire and…
Publication Type: Journal Article
The Effectiveness and Limitations of Fuel Modeling Using the Fire and Fuels Extension to the Forest Vegetation Simulator
Year: 2014
Fuel treatment effectiveness is often evaluated with fire behavior modeling systems that use fuel models to generate fire behavior outputs. How surface fuels are assigned, either using one of the 53 stylized fuel models or developing custom fuel models, can affect predicted fire behavior. We collected surface and canopy fuels data before and 1, 2, 5, and 8 years after prescribed fire treatments across 10 national forests in California. Two new methods of assigning fuel models within the Fire and FuelsExtension to the Forest Vegetation Simulator were evaluated. Field-based values for dead and…
Publication Type: Journal Article
Regional projections of the likelihood of very large wildland fires under a changing climate in the contiguous Western United States
Year: 2014
Seasonal changes in the climatic potential for very large wildfires (VLWF ≥ 50,000 ac ~ 20,234 ha) across the western contiguous United States are projected over the 21st century using generalized linear models and downscaled climate projections for two representative concentration pathways (RCPs). Significant (p ≤ 0.05) increases in VLWF probability for climate of the mid-21st century (2031–2060) relative to contemporary climate are found, for both RCP 4.5 and 8.5. The largest differences are in the Eastern Great Basin, Northern Rockies, Pacific Northwest, Rocky Mountains, and Southwest.…
Publication Type: Journal Article
Fire behavior in masticated fuels: A review
Year: 2014
Mastication is an increasingly common fuels treatment that redistributes “ladder” fuels to the forest floor to reduce vertical fuel continuity, crown fire potential, and fireline intensity, but fuel models do not exist for predicting fire behavior in these fuel types. Recent fires burning in masticated fuels have behaved in unexpected and contradictory ways, likely because the shredded, compact fuel created when trees and shrubs are masticated contains irregularly shaped pieces in mixtures quite different from other woody fuels. We review fuels characteristics and fire behavior in masticated…
Publication Type: Journal Article
Synthesis on crown fire behavior in conifer forests
Year: 2014
Mass media images of raging crown fires have affected how many people view their wildlands. Flames surge and leap dozens and even hundreds of feet into the air; planes zoom above the flames releasing streams of brightly colored retardant; and giant pyrocumulonimbus clouds tower over the landscape. No doubt, it’s dramatic lead story material. But, to many, and especially those in the wildland fire community, this is serious business. Tens of thousands of acres are severely burned in a single day; homes and lives are endangered; and ecosystems are changed dramatically for decades or longer.…
Publication Type: Journal
Simulated western spruce budworm defoliation reduces torching and crowning potential: a sensitivity analysis using a physics-based fire model
Year: 2014
The widespread, native defoliator western spruce budworm (Choristoneura occidentalis Freeman) reduces canopy fuels, which might affect the potential for surface fires to torch (ignite the crowns of individual trees) or crown (spread between tree crowns). However, the effects of defoliation on fire behaviour are poorly understood. We used a physics-based fire model to examine the effects of defoliation and three aspects of how the phenomenon is represented in the model (the spatial distribution of defoliation within tree crowns, potential branchwood drying and model resolution). Our…
Publication Type: Journal Article
Research and development supporting risk-based wildfire effects prediction for fuels and fire management: status and needs
Year: 2013
Wildland fire management has moved beyond a singular focus on suppression, calling for wildfire management for ecological benefit where no critical human assets are at risk. Processes causing direct effects and indirect, long-term ecosystem changes are complex and multidimensional. Robust risk-assessment tools are required that account for highly variable effects on multiple values-at-risk and balance competing objectives, to support decision making. Providing wildland fire managers with risk-analysis tools requires a broad scientific foundation in fire behaviour and effects prediction as…
Publication Type: Journal Article
Crown fire behavior characteristics and prediction in conifer forests: a state-of-knowledge synthesis
Year: 2013
Joint Fire Science Program (JFSP) project 09-S-03-1 was undertaken in response to JFSP Project Announcement No. FA-RFA09-0002 with respect to a synthesis on extreme fire behavior or more specifically a review and analysis of the literature dealing with certain features of crown fire behavior in conifer forests in the United States and adjacent regions of Canada. The key findings presented are organized along nine topical areas: types of crown fires; crown fire initiation; crown fire propagation; crown fire rate of spread; crown fire intensity and flame zone characteristics; crown fire area…
Publication Type: Report
Optimising fuel treatments over time and space
Year: 2013
Fuel treatments have been widely used as a tool to reduce catastrophic wildland fire risks in many forests around the world. However, it is a challenging task for forest managers to prioritise where, when and how to implement fuel treatments across a large forest landscape. In this study, an optimisation model was developed for long-term fuel management decisions at a landscape scale. Using a simulated annealing algorithm, the model optimises locations and timing of fuel treatments, while considering changes in forest dynamics over time, fire behaviour and spread, values at risk, and…
Publication Type: Journal Article
A Land Manager's Guide for Creating Fire-resistant Forests
Year: 2013
This publication provides an overview of how various silvicultural treatments affect fuel and fire behavior, and how to create fire-resistant forests. In properly treated, fire-resistant forests, fire intensity is reduced and overstory trees are more likely to survive than in untreated forests. Fire-resistant forests are not “fireproof” – under the right conditions, any forest will burn. Much of what we present here is pertinent to the drier forests of the Pacific Northwest, which have become extremely dense and fire prone.
Publication Type: Report
Is burn severity related to fire intensity? Observations from landscape scale remote sensing
Year: 2013
Biomass burning by wildland fires has significant ecological, social and economic impacts. Satellite remote sensing provides direct measurements of radiative energy released by the fire (i.e. fire intensity) and surrogate measures of ecological change due to the fire (i.e. fire or burn severity). Despite anecdotal observations causally linking fire intensity with severity, the nature of any relationship has not been examined over extended spatial scales. We compare fire intensities defined by Moderate Resolution Imaging Spectroradiometer Fire Radiative Power (MODIS FRP) products with Landsat-…
Publication Type: Journal Article
Effects of salvage logging and pile-and-burn on fuel loading, potential fire behavior, fuel consumption and emissions
Year: 2013
We used a combination of field measurements and simulation modelling to quantify the effects of salvage logging, and a combination of salvage logging and pile-and-burn fuel surface fuel treatment (treatment combination), on fuel loadings, fire behaviour, fuel consumption and pollutant emissions at three points in time: post-windstorm (before salvage logging), post-salvage logging and post-surface fuel treatment (pile-and-burn). Salvage logging and the treatment combination significantly reduced fuel loadings, fuelbed depth and smoke emissions. Salvage logging and the treatment combination…
Publication Type: Journal Article
Models for predicting fuel consumption in sage-brush-dominated ecosystems
Year: 2013
Fuel consumption predictions are necessary to accurately estimate or model fire effects, including pollutant emissions during wildland fires. Fuel and environmental measurements on a series of operational prescribed fires were used to develop empirical models for predicting fuel consumption in big sagebrush (Artemisia tridentata Nutt.) ecosystems. Models are proposed for predicting fuel consumption during prescribed fires in the fall and the spring. Total prefire fuel loading ranged from 5.3–23.6 Mg · ha−1; between 32% and 92% of the total loading was composed of live and dead big sagebrush.…
Publication Type: Journal Article
Capturing Fire: RxCadre Takes Fire Measurements to a Whole New Level
Year: 2013
Models of fire behavior and effects do not always make accurate predictions, and there is not enough systematically gathered data to validate them. To help advance fire behavior and fire effects model development, the Joint Fire Science Program is helping fund the RxCADRE, which is made up of scientists from the U.S. Forest Service and several universities who orchestrate and collect data on prescribed burns in the southeastern United States. The RxCADRE-prescribed burns are yielding a comprehensive dataset of fire behavior, fire effects, and smoke chemistry and dynamics, with measurements…
Publication Type: Report