Research Database
Displaying 1 - 7 of 7
Long-Term Effects of Fire on Vegetation Structure and Predicted Fire Behavior in Wyoming Big Sagebrush Ecosystems
Year: 2018
Fire historically occurred across the sagebrush steppe, but little is known about how patterns of post-fire fuel accumulation influence future fire in Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) communities. To quantify change in fuel composition and structure in intact sagebrush ecosystems, we sampled 17 years following prescribed fire in eight approximately 400 ha plots (4 burned, 4 unburned control) at Hart Mountain National Antelope Refuge, OR, USA. Fuels data were used to model potential fire behavior in burn and control plots across four environmental scenarios that…
Publication Type: Journal Article
Wildfire risk reduction in the United States: Leadership staff perceptions of local fire department roles and responsibilities
Year: 2018
As wildland fires have had increasing negative impacts on a range of human values, in many parts of the United States (U.S.) and around the world, collaborative risk reduction efforts among agencies, homeowners, and fire departments are needed to improve wildfire safety and mitigate risk. Using interview data from 46 senior officers from local fire departments around the U.S., we examine how leadership staff view their departments’ roles and responsibilities in wildfire risk reduction. Overall, our findings indicate that local fire personnel are often performing a variety of mitigation tasks…
Publication Type: Journal Article
Where wildfires destroy buildings in the US relative to the wildland–urban interface and national fire outreach programs
Year: 2018
Over the past 30 years, the cost of wildfire suppression and homes lost to wildfire in the US have increased dramatically, driven in part by the expansion of the wildland–urban interface (WUI), where buildings and wildland vegetation meet. In response, the wildfire management community has devoted substantial effort to better understand where buildings and vegetation co-occur, and to establish outreach programs to reduce wildfire damage to homes. However, the extent to which the location of buildings affected by wildfire overlaps the WUI, and where and when outreach programs are established…
Publication Type: Journal Article
Rapid growth of the US wildland-urban interface raises wildfire risk
Year: 2018
The wildland-urban interface (WUI) is the area where houses and wildland vegetation meet or intermingle, and where wildfire problems are most pronounced. Here we report that the WUI in the United States grew rapidly from 1990 to 2010 in terms of both number of new houses (from 30.8 to 43.4 million; 41% growth) and land area (from 581,000 to 770,000 km2; 33% growth), making it the fastest-growing land use type in the conterminous United States. The vast majority of new WUI areas were the result of new housing (97%), not related to an increase in wildland vegetation. Within the perimeter of…
Publication Type: Journal Article
Defining extreme wildfire events: Difficulties, challenges, and impacts
Year: 2018
Every year worldwide some extraordinary wildfires occur, overwhelming suppression capabilities, causing substantial damages, and often resulting in fatalities. Given their increasing frequency, there is a debate about how to address these wildfires with significant social impacts, but there is no agreement upon terminology to describe them. The concept of extreme wildfire event (EWE) has emerged to bring some coherence on this kind of events. It is increasingly used, often as a synonym of other terms related to wildfires of high intensity and size, but its definition remains elusive. The goal…
Publication Type: Journal Article
Embracing Complexity to Advance the Science of Wildland Fire Behavior
Year: 2018
Wildland fire behavior research has largely focused on the steady-state interactions between fuels and heat fluxes. Contemporary research is revealing new questions outside the bounds of this simplified approach. Here, we explore the complex interactions taking place beyond steady-state assumptions through acknowledging the manufactured separation of research disciplines in fire science and the dynamic interactions that unfold when these separations are removed. Through a series of examples spanning at least four research disciplines and three ranges of spatial scale, we illustrate that by…
Publication Type: Journal Article
Advancing the Science of Wildland Fire Dynamics Using Process-Based Models
Year: 2018
As scientists and managers seek to understand fire behavior in conditions that extend beyond the limits of our current empirical models and prior experiences, they will need new tools that foster a more mechanistic understanding of the processes driving fire dynamics and effects. Here we suggest that process-based models are powerful research tools that are useful for investigating a large number of emerging questions in wildland fire sciences. These models can play a particularly important role in advancing our understanding, in part, because they allow their users to evaluate the potential…
Publication Type: Journal Article