Research Database
Displaying 61 - 80 of 128
Predicting increasing high severity area burned for three forested regions in the western United States using extreme value theory
Year: 2019
More than 70 years of fire suppression by federal land management agencies has interrupted fire regimes in much of the western United States. The result of missed fire cycles is a buildup of both surface and canopy fuels in many forest ecosystems, increasing the risk of severe fire. The frequency and size of fires has increased in recent decades, as has the area burned with high severity in some ecosystems. A number of studies have examined controls on high severity fire occurrence, but none have yet determined what controls the extent of high severity fire. We developed statistical models…
Publication Type: Journal Article
Short- and long-term effects of ponderosa pine fuel treatments intersected by the Egley Fire Complex, Oregon, USA
Year: 2019
Background Fuel treatments are widely used to alter fuels in forested ecosystems to mitigate wildfire behavior and effects. However, few studies have examined long-term ecological effects of interacting fuel treatments (commercial harvests, pre-commercial thinnings, pile and burning, and prescribed fire) and wildfire. Using annually fitted Landsat satellite-derived Normalized Burn Ratio (NBR) curves and paired pre-fire treated and untreated field sites, we tested changes in the differenced NBR (dNBR) and years since treatment as predictors of biophysical attributes one and nine years after…
Publication Type: Journal Article
A multi-century history of fire regimes along a transect of mixed-conifer forests in central Oregon, U.S.A
Year: 2019
Dry mixed-conifer forests are widespread in the interior Pacific Northwest, but their historical fire regimes are poorly characterized, in particular the relative mix of low- and high-severity fire. We reconstructed a multi-century history of fire from tree rings in dry mixed-conifer forests in central Oregon. These forests are dominated by ponderosa pine (Pinus ponderosa Lawson & C. Lawson), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), and grand fir (Abies grandis (Douglas ex D. Don) Lindl.). Across four, 30-plot grids of ~800 ha covering a mosaic of dry mixed-conifer forest types…
Publication Type: Journal Article
Contributions of fire refugia to resilient ponderosa pine and dry mixed-conifer forest landscapes
Year: 2019
Altered fire regimes can drive major and enduring compositional shifts or losses of forest ecosystems. In western North America, ponderosa pine and dry mixed‐conifer forest types appear increasingly vulnerable to uncharacteristically extensive, high‐severity wildfire. However, unburned or only lightly impacted forest stands that persist within burn mosaics—termed fire refugia—may serve as tree seed sources and promote landscape recovery. We sampled tree regeneration along gradients of fire refugia proximity and density at 686 sites within the perimeters of 12 large wildfires that occurred…
Publication Type: Journal Article
Examining post-fire vegetation recovery with Landsat time series analysis in three western North American forest types
Year: 2019
Background: Few studies have examined post-fire vegetation recovery in temperate forest ecosystems with Landsat time series analysis. We analyzed time series of Normalized Burn Ratio (NBR) derived from LandTrendr spectral-temporal segmentation fitting to examine post-fire NBR recovery for several wildfires that occurred in three different coniferous forest types in western North America during the years 2000 to 2007. We summarized NBR recovery trends, and investigated the influence of burn severity, post-fire climate, and topography on post-fire vegetation recovery via random forest (RF)…
Publication Type: Journal Article
Historical patterns of fire severity and forest structure and composition in a landscape structured by frequent large fires: Pumice Plateau ecoregion, Oregon, USA
Year: 2019
Context Lack of quantitative observations of extent, frequency, and severity of large historical fires constrains awareness of departure of contemporary conditions from those that demonstrated resistance and resilience to frequent fire and recurring drought. Objectives Compare historical and contemporary fire and forest conditions for a dry forest landscape with few barriers to fire spread. Methods Quantify differences in (1) historical (1700–1918) and contemporary (1985–2015) fire extent, fire rotation, and stand-replacing fire and (2) historical (1914–1924) and contemporary (2012) forest…
Publication Type: Journal Article
Wild bee diversity increases with local fire severity in a fire‐prone landscape
Year: 2019
As wildfire activity increases in many regions of the world, it is imperative that we understand how key components of fire‐prone ecosystems respond to spatial variation in fire characteristics. Pollinators provide a foundation for ecological communities by assisting in the reproduction of native plants, yet our understanding of how pollinators such as wild bees respond to variation in fire severity is limited, particularly for forest ecosystems. Here, we took advantage of a natural experiment created by a large‐scale, mixed‐severity wildfire to provide the first assessment of how wild bee…
Publication Type: Journal Article
Increasing trends in high-severity fire in the southwestern USA from 1984 to 2015
Year: 2019
In the last three decades, over 4.1 million hectares have burned in Arizona and New Mexico and the largest fires in documented history have occurred in the past two decades. Changes in burn severity over time, however, have not been well documented in forest and woodland ecosystems in the southwestern US. Using remotely sensed burn severity data from 1621 fires (>404 ha), we assessed trends from 1984 to 2015 in Arizona and New Mexico in (1) number of fires and total area burned in all vegetation types; (2) area burned, area of high-severity, and percent of high-severity fire in all forest…
Publication Type: Journal Article
Spatiotemporal patterns of unburned areas within fire perimeters in the northwestern United States from 1984 to 2014
Year: 2018
A warming climate, fire exclusion, and land cover changes are altering the conditions that produced historical fire regimes and facilitating increased recent wildfire activity in the northwestern United States. Understanding the impacts of changing fire regimes on forest recruitment and succession, species distributions, carbon cycling, and ecosystem services is critical, but challenging across broad spatial scales. One important and understudied aspect of fire regimes is the unburned area within fire perimeters; these areas can function as fire refugia across the landscape during and after…
Publication Type: Journal Article
The influence of fire history on soil nutrients and vegetation cover in mixed-severity fire regime forests of the eastern Olympic Peninsula, Washington, USA
Year: 2018
The rain shadow forests of the Olympic Peninsula exemplify a mixed-severity fire regime class in the midst of a highly productive landscape where spatial heterogeneity of fire severity may have significant implications for below and aboveground post-fire recovery. The purpose of this study was to quantify the impacts of wildfire on forest soil carbon (C) and nitrogen (N) pools and assess the relationship of pyrogenic carbon (PyC) to soil processes in this mixed-severity ecosystem. We established a 112-year fire chronosequence with nine similar forest stands ranging in time since lastfire (TSF…
Publication Type: Journal Article
High-severity fire: Evaluating its key drivers and mapping its probability across western US forests
Year: 2018
Wildland fire is a critical process in forests of the western United States (US). Variation in fire behavior, which is heavily influenced by fuel loading, terrain, weather, and vegetation type, leads to heterogeneity in fire severity across landscapes. The relative influence of these factors in driving fire severity, however, is poorly understood. Here, we explore the drivers of high-severity fire for forested ecoregions in the western US over the period 2002–2015. Fire severity was quantified using a satellite-inferred index of severity, the relativized burn ratio. For each ecoregion, we…
Publication Type: Journal Article
Tree traits influence response to fire severity in the western Oregon Cascades, USA
Year: 2018
Wildfire is an important disturbance process in western North American conifer forests. To better understand forest response to fire, we used generalized additive models to analyze tree mortality and long-term (1 to 25 years post-fire) radial growth patterns of trees that survived fire across a burn severity gradient in the western Cascades of Oregon. We also used species-specific leaf-area models derived from sapwood estimates to investigate the linkage between photosynthetic capacity and growth response. Larger trees and shade intolerant trees had a higher probability of surviving fire.…
Publication Type: Journal Article
Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape
Year: 2018
Many studies have examined how fuels, topography, climate, and fire weather influence fire severity. Less is known about how different forest management practices influence fire severity in multi‐owner landscapes, despite costly and controversial suppression of wildfires that do not acknowledge ownership boundaries. In 2013, the Douglas Complex burned over 19,000 ha of Oregon & California Railroad (O&C) lands in Southwestern Oregon, USA. O&C lands are composed of a checkerboard of private industrial and federal forestland (Bureau of Land Management, BLM) with contrasting…
Publication Type: Journal Article
Post-fire vegetation and fuel development influences fire severity patterns in reburns
Year: 2017
In areas where fire regimes and forest structure have been dramatically altered, there is increasing concern that contemporary fires have the potential to set forests on a positive feedback trajectory with successive reburns, one in which extensive stand-replacing fire could promote more stand-replacing fire. Our study utilized an extensive set of field plots established following four fires that occurred between 2000 and 2010 in the northern Sierra Nevada, California, USA that were subsequently reburned in 2012. The information obtained from these field plots allowed for a unique set of…
Publication Type: Journal Article
Restoring and managing low-severity fire in dry-forest landscapes of the western USA
Year: 2017
Low-severity fires that killed few canopy trees played a significant historical role in dry forests of the western USA and warrant restoration and management, but historical rates of burning remain uncertain. Past reconstructions focused on on dating fire years, not measuring historical rates of burning. Past statistics, including mean composite fire interval (mean CFI) and individual-tree fire interval (mean ITFI) have biases and inaccuracies if used as estimators of rates. In this study, I used regression, with a calibration dataset of 96 cases, to test whether these statistics could…
Publication Type: Journal Article
Prescribed Fire in Grassland Butterfly Habitat: Targeting Weather and Fuel Conditions to Reduce Soil Temperatures and Burn Severity
Year: 2017
Prescribed burning is a primary tool for habitat restoration and management in fire-adapted grasslands. Concerns about detrimental effects of burning on butterfly populations, however, can inhibit implementation of treatments. Burning in cool and humid conditions is likely to result in lowered soil temperatures and to produce patches of low burn severity, both of which would enhance survival of butterfly larvae at or near the soil surface. In this study, we burned 20 experimental plots in South Puget Sound, Washington, USA, prairies across a range of weather and fuel conditions to address the…
Publication Type: Journal Article
Factors influencing fire severity under moderate burning conditions in the Klamath Mountains, northern California, USA
Year: 2017
Topography, weather, and fuels are known factors driving fire behavior, but the degree to which each contributes to the spatial pattern of fire severity under different conditions remains poorly understood. The variability in severity within the boundaries of the 2006 wildfires that burned in the Klamath Mountains, northern California, along with data on burn conditions and new analytical tools, presented an opportunity to evaluate factors influencing fire severity under burning conditions representative of those where management of wildfire for resource benefit is most likely. Fire severity…
Publication Type: Journal Article
Fires following Bark Beetles: Factors Controlling Severity and Disturbance Interactions in Ponderosa Pine
Year: 2017
Previous studies have suggested that bark beetles and fires can be interacting disturbances, whereby bark beetle–caused tree mortality can alter the risk and severity of subsequent wildland fires. However, there remains considerable uncertainty around the type and magnitude of the interaction between fires following bark beetle attacks, especially in drier forest types such as those dominated by ponderosa pine (Pinus ponderosa Lawson & C. Lawson). We used a full factorial design across a range of factors thought to control bark beetle−fire interactions, including the temporal phase of the…
Publication Type: Journal Article
Accommodating mixed-severity fire to restore and maintain ecosystem integrity with a focus on the Sierra Nevada of California, USA
Year: 2017
Existing fire policy encourages the maintenance of ecosystem integrity in fire management, yet this is difficult to implement on lands managed for competing economic, human safety, and air quality concerns. We discuss a fire management approach in the mid-elevations of the Sierra Nevada, California, USA, that may exemplify similar challenges in other fire-adapted regions of the western USA. We also discuss how managing for pyrodiversity through mixed-severity fires can promote ecosystem integrity in Sierran mixed conifer and ponderosa pine (Pinus ponderosa Laws) forests.
Publication Type: Journal Article
Alternative characterization of forest fire regimes: incorporating spatial patterns
Year: 2017
The proportion of fire area that experienced stand-replacing fire effects is an important attribute of individual fires and fire regimes in forests, and this metric has been used to group forest types into characteristic fire regimes. However, relying on proportion alone ignores important spatial characteristics of stand-replacing patches, which can have a strong influence on post-fire vegetation dynamics. We propose a new more ecologically relevant approach for characterizing spatial patterns of stand-replacing patches to account for potential limitation of conifer seed dispersal. We applied…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 2
- 3
- 4
- 5
- 6
- …
- Next page
- Last page