Research Database
Displaying 1 - 10 of 10
Canadian forests are more conducive to high-severity fires in recent decades
Year: 2025
Canada has experienced more-intense and longer fire seasons with more-frequent uncontrollable wildfires over the past decades. However, the effect of these changes remains unknown. This study identifies driving forces of burn severity and estimates its spatiotemporal variations in Canadian forests. Our results show that fuel aridity was the most influential driver of burn severity, summer months were more prone to severe burning, and the northern areas were most influenced by the changing climate. About 6% (0.54 to 14.64%) of the modeled areas show significant increases in the number of days…
Publication Type: Journal Article
A fire deficit persists across diverse North American forests despite recent increases in area burned
Year: 2025
Rapid increases in wildfire area burned across North American forests pose novel challenges for managers and society. Increasing area burned raises questions about whether, and to what degree, contemporary fire regimes (1984–2022) are still departed from historical fire regimes (pre-1880). We use the North American tree-ring fire-scar network (NAFSN), a multi-century record comprising >1800 fire-scar sites spanning diverse forest types, and contemporary fire perimeters to ask whether there is a contemporary fire surplus or fire deficit, and whether recent fire years are unprecedented…
Publication Type: Journal Article
Evidence for strong bottom-up controls on fire severity during extreme events
Year: 2025
BackgroundRecord fire years in recent decades have challenged post-fire forest recovery in the western United States and beyond. To improve management responses, it is critical that we understand the conditions under which management can mitigate severe wildfire impacts, and when it cannot. Here, we evaluated the influence of top-down and bottom-up fire severity forcings on 17 wildfires occurring during two consecutive record-setting years in the eastern Cascade Mountains of Washington State. Despite much of the area having been burned after an extended period of fire…
Fire Effects and Fire Ecology, Fire History, Fuels and Fuel Treatments, Restoration and Hazardous Fuel Reduction
Publication Type: Journal Article
Comparing modeled soil temperature and moisture dynamics during prescribed fires, slash-pile burns and wildfires
Year: 2025
Background: Wildfires, prescribed fires and slash-pile burns are disturbances that occur in many terrestrial ecosystems. Such fires produce variable surface heat fluxes causing a spectrum of effects on soil, such as seed mortality, nutrient loss, changes in microbial activity and water repellency. Accurately modeling soil heating is vital to predicting these second-order fire effects. The process-based Massman HMV (Heat–Moisture–Vapor) model incorporates soil water evaporation, heat transport and water vapor movement, and captures the observed rapid evaporation of soil moisture. Aims:…
Publication Type: Journal Article
Prescribed fire, managed burning, and previous wildfires reduce the severity of a southwestern US gigafire
Year: 2025
In many parts of the western United States, wildfires are becoming larger and more severe, threatening the persistence of forest ecosystems. Understanding the ways in which management activities such as prescribed fire and managed wildfire can mitigate fire severity is essential for developing effective forest conservation strategies. We evaluated the effects of previous fuels reduction treatments, including prescribed fire and wildfire managed for resource benefit, and other wildfires on the burn severity of the 2022 Black Fire in southwestern New Mexico, USA. The Black Fire burned over 131,…
Publication Type: Journal Article
Extreme Fire Spread Events Burn More Severely and Homogenize Postfire Landscapes in the Southwestern United States
Year: 2025
Extreme fire spread events rapidly burn large areas with disproportionate impacts on people and ecosystems. Such events are associated with warmer and drier fire seasons and are expected to increase in the future. Our understanding of the landscape outcomes of extreme events is limited, particularly regarding whether they burn more severely or produce spatial patterns less conducive to ecosystem recovery. To assess relationships between fire spread rates and landscape burn severity patterns, we used satellite fire detections to create day‐of‐burning maps for 623 fires comprising 4267 single‐…
Publication Type: Journal Article
Methods to assess fire-induced tree mortality: review of fire behaviour proxy and real fire experiments
Year: 2025
Background: The increased interest in why and how trees die from fire has led to several syntheses of the potential mechanisms of fire-induced tree mortality. However, these generally neglect to consider experimental methods used to simulate fire behaviour conditions.Aims: To describe, evaluate the appropriateness of and provide a historical timeline of the different approaches that have been used to simulate fire behaviour in fire-induced tree mortality studies.Methods: We conducted a historical review of the different actual and fire proxy methods that have been used to…
Publication Type: Journal Article
Prescribed fire, managed burning, and previous wildfires reduce the severity of a southwestern US gigafire
Year: 2025
In many parts of the western United States, wildfires are becoming larger and more severe, threatening the persistence of forest ecosystems. Understanding the ways in which management activities such as prescribed fire and managed wildfire can mitigate fire severity is essential for developing effective forest conservation strategies. We evaluated the effects of previous fuels reduction treatments, including prescribed fire and wildfire managed for resource benefit, and other wildfires on the burn severity of the 2022 Black Fire in southwestern New Mexico, USA. The Black Fire burned over 131,…
Publication Type: Journal Article
Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006
Year: 2011
Fire is a keystone process in many ecosystems of western North America. Severe fires kill and consume large amounts of above- and belowground biomass and affect soils, resulting in long-lasting consequences for vegetation, aquatic ecosystem productivity and diversity, and other ecosystem properties. We analyzed the occurrence of, and trends in, satellite-derived burn severity across six ecoregions in the Southwest and Northwest regions of the United States from 1984 to 2006 using data from the Monitoring Trends in Burn Severity project. Using 1,024 fires from the Northwest (4,311,871 ha) and…
Publication Type: Journal Article
Short- and Long-term Effects of Fire on Carbon in US Dry Temperate Forest Systems
Year: 2011
Forests sequester carbon from the atmosphere, and in so doing can mitigate the effects of climate change. Fire is a natural disturbance process in many forest systems that releases carbon back to the atmosphere. In dry temperate forests, fires historically burned with greater frequency and lower severity than they do today. Frequent fires consumed fuels on the forest floor and maintained open stand structures. Fire suppression has resulted in increased understory fuel loads and tree density; a change in structure that has caused a shift from low- to high-severity fires. More severe fires,…
Publication Type: Journal Article