Research Database
Displaying 141 - 160 of 198
Topography, fuels, and fire exclusion drive fire severity of the Rim Fire in an old-growth mixed-conifer forest, Yosemite National Park, USA
Year: 2015
The number of large, high-severity fires has increased in the western United States over the past 30 years due to climate change and increasing tree density from fire suppression. Fuel quantity, topography, and weather during a burn control fire severity, and the relative contributions of these controls in mixed-severity fires in mountainous terrain are poorly understood. In 2013, the Rim Fire burned a previously studied 2125 ha area of mixed-conifer forest in Yosemite National Park. Data from 84 plots sampled in 2002 revealed increases in tree density, basal area, and fuel buildup since 1899…
Publication Type: Journal Article
Graduate Research Innovation Awards Encourage Young Scientists to Ask Bold Questions
Year: 2014
The Joint Fire Science Program (JFSP), in partnership with the Association for Fire Ecology,offers Graduate Research Innovation (GRIN) awards yearly to a handful of top-quality graduatestudents conducting research in fire science. GRIN awards are intended to nurture the next generationof fire and fuels scientists and managers, enhance their professional development,help them become engaged with their community of peers, and equip them to tacklethe fire and fuels management challenges of today and tomorrow.
Publication Type: Report
Fuel treatment prescriptions alter spatial patterns of fire severity around the wildland-urban interface during the Wallow Fire, Arizona, USA
Year: 2014
Fuel reduction treatments are implemented in the forest surrounding the wildland–urban interface (WUI) to provide defensible space and safe opportunity for the protection of homes during a wildfire. The 2011 Wallow Fire in Arizona USA burned through recently implemented fuel treatments in the wildland surrounding residential communities in the WUI, and those fuel treatments have been credited with providing firefighter opportunities to protect residences during the Wallow Fire and thereby preventing the loss of homes that otherwise would have been burned. To characterize the spatial pattern…
Publication Type: Journal Article
Taming the Software Chaos: True to its Promise, IFTDSS Eases the Burden of Fuels Treatment Planning - and Does a Lot More Besides
Year: 2014
A key problem reported by the fuels treatment planning community is the difficulty and inefficiency of evaluating and then applying many planning tools and applications. Fuels specialists have struggled to find, load, and learn all the different fuels and fire planning models, not to mention the interface of running, adjusting, and inputting data specific to each model without the ability to easily share inputs/outputs between models. The Interagency Fuels Treatment Decision Support System (IFTDSS) was conceived as a way for users to learn one interface, access a variety of data and models…
Publication Type: Report
Clearcutting and high severity wildfire have comparable effects on growth of direct-seeded interior Douglas-fir
Year: 2014
The degree to which harvesting can achieve comparable beneficial effects to wildfire on seedling establishment is a key factor in understanding regeneration dynamics in dry interior forest ecosystems. We compared the capacity of harvesting versus wildfire to support establishment of directly-seeded interior Douglas-fir over a three-year period in the interior Douglas-fir biogeoclimatic zone of British Columbia. The mixed-severity McLure Fire of August 2003 affected over 26,000 hectares in the central British Columbia, Canada. Within the fire-affected area, we assessed growth performance in…
Publication Type: Journal Article
Previous Fires Moderate Burn Severity of Subsequent Wildland Fires in Two Large Western US Wilderness Areas
Year: 2014
Wildland fire is an important natural process in many ecosystems. However, fire exclusion has reduced frequency of fire and area burned in many dry forest types, which may affect vegetation structure and composition, and potential fire behavior. In forests of the western U.S., these effects pose a challenge for fire and land managers who seek to restore the ecological process of fire to ecosystems. Recent research suggests that landscapes with unaltered fire regimes are more ‘‘self-regulating’’ than those that have experienced fire-regime shifts; in self-regulating systems, fire size and…
Publication Type: Journal Article
Understanding evacuation preferences and wildfire mitigations among Northwest Montana residents
Year: 2014
There is currently insufficient information in the United States about residents’ planned evacuation actions during wildfire events, including any intent to remain at or near home during fire events. This is incompatible with growing evidence that select populations at risk from wildfire are considering alternatives to evacuation. This study explores the evacuation preferences of wildland–urban interface residents in Flathead County, Montana, USA. We compare the performance of wildfire mitigation and fuel reduction actions across groups of residents with different primary evacuation…
Publication Type: Journal Article
Traditional Ecological Knowledge: A Model for Modern Fire Management?
Year: 2014
For many thousands of years, aboriginal peoples worldwide used fire to manage landscapes. In NorthAmerica, the frequency and extent of fire (both human caused and natural) were much reduced afterEuropean colonization. Fire exclusion became the policy in the United States for most of the 20thcentury as the country became more settled and industrialized. Past fire exclusion has helped producelandscapes that are highly susceptible to uncharacteristically severe wildfire. An urgent challengefor land managers today is to reduce fire risk through several means, including prescribed burning,without…
Publication Type: Report
Landscape restoration of a forest with a historically mixed-severity fire regime: What was the historical landscape pattern of forest and openings?
Year: 2014
Forest management of dry forests in the western US that historically experienced mixed-severity fire regimes is increasingly focused on landscape-scale restoration. However, this restoration effort is constrained by historic range of variation (HRV) reference conditions that lack information concerning the spatial configuration of these forests at intermediate scales (approximately 0.01–100 ha). I used reconstruction methods to map historical (1860) pattern of ponderosa pine-Douglas-fir forests along twenty 1 km long transects on Colorado’s Front Range and compared pre-settlement opening and…
Publication Type: Journal Article
Trust: A planning guide for wildfire agencies & practitioners
Year: 2014
This planning guide is the outcome of an international collaboration of researchers and practitioners/field managers working in communities at risk of wildfire in three countries. Initially, the team of social scientists from Australia, Canada, and the United States utilized the collective research literature to examine factors that influence stakeholder trust. A working draft of this document was shared with experienced agency personnel and community leaders previous to interactive workshops and field visits in each country. This allowed for deliberations of the essential features of…
Publication Type: Report
Briefing: Climate and Wildfire in Western U.S. Forests
Year: 2014
Wildfire in western U.S. federally managed forests has increased substantially in recent decades, with large (>1000 acre) fires in the decade through 2012 over five times as frequent (450 percent increase) and burned area over ten times as great (930 percent increase) as the 1970s and early 1980s. These changes are closely linked to increased temperatures and a greater frequency and intensity of drought. Projected additional future warming implies that wildfire activity may continue to increase in western forests. However, the interaction of changes in climate, fire and other disturbances…
Publication Type: Conference Proceedings
Fire Learning Network Field Guide
Year: 2014
The Fire Learning Network is part of the “Promoting Ecosystem Resilience and Fire Adapted Communities Together: Collaborative Engagement, Collective Action and CoOwnership of Fire” cooperative agreement among The Nature Conservancy, USDA Forest Service and agencies of the Department of the Interior (Bureau of Indian Affairs, Bureau of Land Management, Fish & Wildlife Service, National Park Service). In addition to the network of landscape collaboratives, it includes prescribed fire training exchanges and targeted treatments under Scaling-up to Promote Ecosystem Resiliency.
Publication Type: Report
Severity of an uncharacteristically large wildfire, the Rim Fire, in forests with relatively restored frequent fire regimes
Year: 2014
The 2013 Rim Fire, originating on Forest Service land, burned into old-growth forests within Yosemite National Park with relatively restored frequent-fire regimes (¡Ý2 predominantly low and moderate severity burns within the last 35 years). Forest structure and fuels data were collected in the field 3-4 years before the fire, providing a rare chance to use pre-existing plot data to analyze fire effects. We used regression tree and random forests analysis to examine the influence of forest structure, fuel, fire history, topographic and weather conditions on observed fire severity in the Rim…
Publication Type: Journal Article
Fuel treatments and landform modify landscape patterns of burn severity in an extreme fire event
Year: 2014
Under a rapidly warming climate, a critical management issue in semiarid forests of western North America is how to increase forest resilience to wildfire. We evaluated relationships between fuel reduction treatments and burn severity in the 2006 Tripod Complex fires, which burned over 70 000 ha of mixed-conifer forests in the North Cascades range of Washington State and involved 387 past harvest and fuel treatment units. A secondary objective was to investigate other drivers of burn severity including landform, weather, vegetation characteristics, and a recent mountain pine beetle outbreak.…
Publication Type: Journal Article
Building trust, establishing credibility, and communicating fire issues with the public
Year: 2014
With more people than ever living in the vicinity of the wildland-urban interface, communicating wildland fire management activities and building trust with the public is paramount for safety. Although the time and resources it takes to build and maintain the public’s trust may seem daunting, it may be one of the most important factors determining the long-term viability of a fire management program. Trust is built over time through personal relationships with citizens and communities and also by demonstrating competence and establishing credibility. When trust and confidence have been…
Publication Type: Report
Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies
Year: 2014
Widespread tree mortality caused by outbreaks of native bark beetles (Circulionidae: Scolytinae) in recent decades has raised concern among scientists and forest managers about whether beetle outbreaks fuel more ecologically severe forest fires and impair postfire resilience. To investigate this question, we collected extensive field data following multiple fires that burned subalpine forests in 2011 throughout the Northern Rocky Mountains across a spectrum of prefire beetle outbreak severity, primarily from mountain pine beetle (Dendroctonus ponderosae). We found that recent (2001–2010)…
Publication Type: Journal Article
Fire severity and tree regeneration following bark beetle outbreaks: the role of outbreak stage and burning conditions
Year: 2014
The degree to which recent bark beetle (Dendroctonus ponderosae) outbreaks may influence fire severity and postfire tree regeneration is of heightened interest to resource managers throughout western North America, but empirical data on actual fire effects are lacking. Outcomes may depend on burning conditions (i.e., weather during fire), outbreak severity, or intervals between outbreaks and subsequent fire. We studied recent fires that burned through green-attack/red-stage (outbreaks <3 years before fire) and gray-stage (outbreaks 3–15 years before fire) subalpine forests dominated by…
Publication Type: Journal Article
Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA
Year: 2014
Warmer and drier climate over the past few decades has brought larger fire sizes and increased annual area burned in forested ecosystems of western North America, and continued increases in annual area burned are expected due to climate change. As warming continues, fires may also increase in severity and produce larger contiguous patches of severely burned areas. We used remotely sensed burn-severity data from 125 fires in the northern Cascade Range of Washington, USA, to explore relationships between fire size, severity, and the spatial pattern of severity. We examined relationships between…
Publication Type: Journal Article
Managing Forests and Fire in Changing Climates
Year: 2013
With projected climate change, we expect to face much more forest fi re in the coming decades. Policymakers are challenged not to categorize all fires as destructive to ecosystems simply because they have long flame lengths and kill most of the trees within the fire boundary. Ecological context matters: In some ecosystems, high-severity regimes are appropriate, but climate change may modify these fire regimes and ecosystems as well. Some undesirable impacts may be avoided or reduced through global strategies, as well as distinct strategies based on a forest’s historical fire regime.
Publication Type: Report
Soil heating during burning of forest slash piles and wood piles
Year: 2013
Pile burning of conifer slash is a common fuel reduction practice in forests of the western United States that has a direct, yet poorly quantified effect on soil heating. To address this knowledge gap, we measured the heat pulse beneath hand-built piles ranging widely in fuel composition and pile size in sandy-textured soils of the Lake Tahoe Basin. The soil heat pulse depended primarily on fuel composition, not on pile size. Burn piles dominated by large wood produced extreme temperatures in soil profile, with lethal heating lasting up to 3 days. In contrast, the heat pulse was moderate…
Publication Type: Journal Article