Research Database
Displaying 1 - 20 of 246
Assessing fuel treatments and burn severity using global and local analyses
Year: 2025
BackgroundWildfires in western U.S. dry forest ecosystems have increased in size and severity during recent decades due primarily to more than a century of fire suppression, exclusion of Indigenous fire, and a rapidly warming climate. Fuel treatments have been employed to restore historical forest conditions and mitigate burn severity. However, their influence on burn severity in the context of other environmental variables and firefighting operations has not been extensively explored. The 2021 Bootleg Fire in south-central Oregon provided an opportunity to evaluate the effectiveness of…
Publication Type: Journal Article
Influence of Time‐Averaging of Climate Data on Estimates of Atmospheric Vapor Pressure Deficit and Inferred Relationships With Wildfire Area in the Western United States
Year: 2025
Vapor pressure deficit (VPD) is a driver of evaporative demand and correlates strongly with wildfire extent in the western United States (WUS). Vapor pressure deficit is the difference between saturation vapor pressure (es) and actual vapor pressure (ea). Because es increases nonlinearly with temperature, calculations of time‐averaged VPD vary depending on the frequency of temperature measurements and how ea is calculated, potentially limiting our understanding of fire‐climate relationships. We calculate eight versions of monthly VPD across the WUS and assess their differences. Monthly VPDs…
Publication Type: Journal Article
Implications of recent wildfires for forest management on federal lands in the Pacific Northwest, USA
Year: 2025
Adoption of the Northwest Forest Plan (NWFP) in 1994 marked a pivotal moment in federal forest management in the Pacific Northwest, shifting focus away from intensive timber harvest toward an ecosystem management approach that emphasized late successional and old forest habitat with the creation of a reserve network across moist and dry forest zones. Thirty years after implementation, concerns over accelerating wildfire threats have prompted efforts to adapt the Plan to a warming climate, yet the actual effects of recent fires on NWFP forests are not well understood. In this study, we…
Publication Type: Journal Article
Collapse and restoration of mature forest habitat in California
Year: 2025
Mature and old-growth forests provide critically important ecosystems services and wildlife habitats, but they are being lost at a rapid rate to uncharacteristic mega-disturbances. We developed a simulation system to project time-to-extinction for mature and old-growth forest habitat in the Sierra Nevada, California, USA. The simulation parameters were derived from a 1985–2022 empirical time-series of habitat for the southern Sierra Nevada fisher (Pekania pennanti), an endangered native mammal and old-forest obligate that has seen a 50 % decline in its habitat over the past…
Publication Type: Journal Article
Canadian forests are more conducive to high-severity fires in recent decades
Year: 2025
Canada has experienced more-intense and longer fire seasons with more-frequent uncontrollable wildfires over the past decades. However, the effect of these changes remains unknown. This study identifies driving forces of burn severity and estimates its spatiotemporal variations in Canadian forests. Our results show that fuel aridity was the most influential driver of burn severity, summer months were more prone to severe burning, and the northern areas were most influenced by the changing climate. About 6% (0.54 to 14.64%) of the modeled areas show significant increases in the number of days…
Publication Type: Journal Article
Intensifying Fire Season Aridity Portends Ongoing Expansion of Severe Wildfire in Western US Forests
Year: 2025
Area burned by wildfire has increased in western US forests and elsewhere over recent decades coincident with warmer and drier fire seasons. However, high–severity fire—fire that kills all or most trees—is arguably a more important metric of fire activity given its destabilizing influence on forest ecosystems and direct and indirect impacts to human communities. Here, we quantified area burned and area burned severely in western US forests from 1985 to 2022 and evaluated trends through time. We also assessed key relationships between area burned, extent and proportion burned severely…
Publication Type: Journal Article
A Quantitative Analysis of Firefighter Availability and Prescribed Burning in the Okanogan–Wenatchee National Forest
Year: 2025
Wildfire activity in the western United States has been on the rise since the mid-1980s, with longer, higher-risk fire seasons projected for the future. Prescribed burning mitigates the risk of extreme wildfire events, but such treatments are currently underutilized. Fire managers have cited lack of firefighter availability as a key barrier to prescribed burning. We use both principal component analysis (PCA) and logistic regression modeling methodologies to investigate whether or not (and if yes, under what conditions) personnel shortages on a given day are associated with lower odds of a…
Publication Type: Journal Article
Following megafires fishes thrive and amphibians persist even in severely burned watersheds
Year: 2025
Wildfires are increasing in severity, frequency and size, potentially threatening freshwater species that adapted under different disturbance regimes. However, few wildfire studies have comprehensively evaluated freshwater populations and assemblages following wildfire over broad spatial scales while accounting for post-fire salvage practices in the watershed. We reveal that stream vertebrate assemblages across thirty 4th order streams, spanning a range of both watershed fire severity and post-fire forest management extent, were minimally influenced by immediate effects of fire alone (…
Publication Type: Journal Article
Prescribed fire, managed burning, and previous wildfires reduce the severity of a southwestern US gigafire
Year: 2025
In many parts of the western United States, wildfires are becoming larger and more severe, threatening the persistence of forest ecosystems. Understanding the ways in which management activities such as prescribed fire and managed wildfire can mitigate fire severity is essential for developing effective forest conservation strategies. We evaluated the effects of previous fuels reduction treatments, including prescribed fire and wildfire managed for resource benefit, and other wildfires on the burn severity of the 2022 Black Fire in southwestern New Mexico, USA. The Black Fire burned over 131,…
Publication Type: Journal Article
Leveraging wildfire to augment forest management and amplify forest resilience
Year: 2025
Successive catastrophic wildfire seasons in western North America have escalated the urgency around reducing fire risk to communities and ecosystems. In historically frequent-fire forests, fuel buildup as a result of fire exclusion is contributing to increased fire severity. The probability of high-severity fire can be reduced by active forest management that reduces fuels, prompting federal and state agencies to commit significant resources to increase the pace and scale of fuel reduction treatments. However, lower severity areas of wildfires also have the potential to act as “treatments,”…
Publication Type: Journal Article
Increasing Hydroclimatic Whiplash Can Amplify Wildfire Risk in a Warming Climate
Year: 2025
On January 7 and 8, 2025, a series of wind-driven wildfires occurred in Los Angeles County in Southern California. Two of these fires ignited in dense woody chaparral shrubland and immediately burned into adjacent populated areas–the Palisades Fire on the coastal slopes of the Santa Monica Mountains and the Eaton fire in the foothills of the San Gabriel Mountains. Both fires ultimately eclipsed the traditionally-defined “wildland-urban interface” boundaries by burning structure-to-structure as an urban conflagration. The scope of the devastation is staggering; at the time of writing, the…
Publication Type: Report
Near real-time indicators of burn severity in the western U.S. from active fire tracking
Year: 2025
BackgroundTimely information on wildfire burn severity is critical to assess and mitigate potential post-fire impacts on soils, vegetation, and hillslope stability. Tracking individual fire spread and intensity using satellite active fire data provides a pathway to near real-time (NRT) information. Here, we generated a large database (n = 2177) of wildfire events in the western United States (U.S.) between 2012 and 2021 using active fire detections from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (SNPP) satellite and…
Publication Type: Journal Article
Big trees burning: Divergent wildfire effects on large trees in open- vs. closed-canopy forests
Year: 2025
Wildfire activity has accelerated with climate change, sparking concerns about uncharacteristic impacts on mature and old-growth forests containing large trees. Recent assessments have documented fire-induced losses of large-tree habitats in the US Pacific Northwest, but key uncertainties remain regarding contemporary versus historical fire effects in different forest composition types, specific impacts on large trees within closed versus open canopies, and the role of fuel reduction treatments. Focusing on the 2021 Schneider Springs Fire, which encompassed 43,000 ha in the eastern Cascade…
Publication Type: Journal Article
Decreasing frequency of low and moderate fire weather days may be contributing to large wildfire occurrence in the northern Sierra Nevada
Year: 2025
Previous analyses identified large-scale climatic patterns contributing to greater fuel aridity as drivers of recent dramatic increases in wildfire activity throughout California. This study revisits an approach to investigate more local fire weather patterns in the northern Sierra Nevada; a region within California that has experienced exceptionally high wildfire activity recently. The annual percentages of fire season days above 90th and 95th percentile Energy Release Component (ERC) values were very low prior to 1994 (Fig. 3). Since 1994, years with noticeable percentages of exceedances (…
Publication Type: Journal Article
Resource objective wildfires shifted forest structure and fuels toward pre-fire-exclusion conditions in a remote Arizona wilderness
Year: 2025
BackgroundLarge, severe fires are increasing throughout frequent-fire forests of the western United States due to warming climatic conditions, as well as legacies of early twentieth century land-use practices and anthropogenic fire exclusion. Resource objective (RO) wildfires—where naturally ignited wildfires are allowed to burn to accomplish management objectives—are increasingly accepted due to relatively low cost and flexibility on lands where mechanical treatments are not allowed (e.g., designated wilderness) or economically feasible. We previously implemented a field…
Publication Type: Journal Article
A fire deficit persists across diverse North American forests despite recent increases in area burned
Year: 2025
Rapid increases in wildfire area burned across North American forests pose novel challenges for managers and society. Increasing area burned raises questions about whether, and to what degree, contemporary fire regimes (1984–2022) are still departed from historical fire regimes (pre-1880). We use the North American tree-ring fire-scar network (NAFSN), a multi-century record comprising >1800 fire-scar sites spanning diverse forest types, and contemporary fire perimeters to ask whether there is a contemporary fire surplus or fire deficit, and whether recent fire years are unprecedented…
Publication Type: Journal Article
Finding floral and faunal species richness optima among active fire regimes
Year: 2025
Changing fire regimes have important implications for biodiversity and challenge traditional conservation approaches that rely on historical conditions as proxies for ecological integrity. This historical-centric approach becomes increasingly tenuous under climate change, necessitating direct tests of environmental impacts on biodiversity. At the same time, widespread departures from historical fire regimes have limited the ability to sample diverse fire histories. We examined 2 areas in California's Sierra Nevada (USA) with active fire regimes to study the responses of bird, plant, and bat…
Publication Type: Journal Article
Prescribed fire, managed burning, and previous wildfires reduce the severity of a southwestern US gigafire
Year: 2025
In many parts of the western United States, wildfires are becoming larger and more severe, threatening the persistence of forest ecosystems. Understanding the ways in which management activities such as prescribed fire and managed wildfire can mitigate fire severity is essential for developing effective forest conservation strategies. We evaluated the effects of previous fuels reduction treatments, including prescribed fire and wildfire managed for resource benefit, and other wildfires on the burn severity of the 2022 Black Fire in southwestern New Mexico, USA. The Black Fire burned over 131,…
Publication Type: Journal Article
Increasing wildfire frequency decreases carbon storage and leads to regeneration failure in Alaskan boreal forests
Year: 2025
BackgroundThe increasing size, severity, and frequency of wildfires is one of the most rapid ways climate warming could alter the structure and function of high-latitude ecosystems. Historically, boreal forests in western North America had fire return intervals (FRI) of 70–130 years, but shortened FRIs are becoming increasingly common under extreme weather conditions. Here, we quantified pre-fire and post-fire C pools and C losses and assessed post-fire seedling regeneration in long (> 70 years), intermediate (30–70 years), and short (< 30 years) FRIs, and triple (three fires in < 70…
Publication Type: Journal Article
Comparative Analysis of Ensemble and Deterministic Models for Fire Weather Index (FWI) System Forecasting
Year: 2025
Accurate fire weather forecasting is essential for effective wildfire management, particularly in regions increasingly affected by extreme fire activity such as British Columbia and Alberta, Canada. This study evaluates the predictive performance of three ensemble forecasting systems–the Ensemble Prediction System (ENS), the Global Ensemble Forecast System (GEFS), and the Canadian Global Ensemble Prediction System (GEPS)–and one deterministic model (High Resolution Forecast, HRES) –in forecasting components of the Canadian Fire Weather Index (FWI) System with 1–15 days lead time during the…
Publication Type: Journal Article