Research Database
Displaying 1 - 13 of 13
The Power Grid/Wildfire Nexus: Using GIS and Satellite Remote Sensing to Identify Vulnerabilities
Year: 2023
The effects of wildfire on the power grid are a recurring concern for utility companies who need reliable information about where to prioritize infrastructure hardening. Though there are existing data layers that provide measures of burn probability, these models predominately consider long-term climate variables, which are not helpful when analyzing current season trends. Utility companies need data that are temporally and locally relevant. To determine the primary drivers of burn probability relative to power grid vulnerability, this study assessed potential wildfire drivers that are both…
Publication Type: Journal Article
Consistent, high-accuracy mapping of daily and sub-daily wildfire growth with satellite observations
Year: 2023
Background: Fire research and management applications, such as fire behaviour analysis and emissions modelling, require consistent, highly resolved spatiotemporal information on wildfire growth progression. Aims: We developed a new fire mapping method that uses quality-assured sub-daily active fire/thermal anomaly satellite retrievals (2003–2020 MODIS and 2012–2020 VIIRS data) to develop a high-resolution wildfire growth dataset, including growth areas, perimeters, and cross-referenced fire information from agency reports. Methods: Satellite fire detections were buffered using a historical…
Publication Type: Journal Article
Satellite-derived prefire vegetation predicts variation in field-based invasive annual grass cover after fir
Year: 2023
AimsInvasion by annual grasses (IAGs) and concomitant increases in wildfire are impacting many drylands globally, and an understanding of factors that contribute to or detract from community resistance to IAGs is needed to inform postfire restoration interventions. Prefire vegetation condition is often unknown in rangelands but it likely affects variation in postfire invasion resistance across large burned scars. Whether satellite-derived products like the Rangeland Analysis Platform (RAP) can fulfill prefire information needs and be used to parametrize models of fire recovery to inform…
Publication Type: Journal Article
Quantifying burned area of wildfires in the western United States from polar-orbiting and geostationary satellite active-fire detections
Year: 2023
Background: Accurately estimating burned area from satellites is key to improving biomass burning emission models, studying fire evolution and assessing environmental impacts. Previous studies have found that current methods for estimating burned area of fires from satellite active-fire data do not always provide an accurate estimate. Aims and methods: In this work, we develop a novel algorithm to estimate hourly accumulated burned area based on the area from boundaries of non-convex polygons containing the accumulated Visible Infrared Imaging Radiometer Suite (VIIRS) active-fire detections.…
Publication Type: Journal Article
Deterioration of air quality associated with the 2020 US wildfires
Year: 2023
The wildfires of August and September 2020 in the western part of the United States were characterized by an unparalleled duration and wide geographical coverage. A particular consequence of massive wildfires includes serious health effects due to short and long-term exposure to poor air quality. Using a variety of data sources including aerosol optical depth (AOD) and ultraviolet aerosol index (UVAI), obtained with the Moderate-Resolution Imaging Spectroradiometer (MODIS), Multi-Angle Implementation of Atmospheric Correction (MAIAC) and Tropospheric Monitoring Instrument (TROPOMI), combined…
Publication Type: Journal Article
Using soil moisture information to better understand and predict wildfire danger: a review of recent developments and outstanding questions
Year: 2023
Soil moisture conditions are represented in fire danger rating systems mainly through simple drought indices based on meteorological variables, even though better sources of soil moisture information are increasingly available. This review summarises a growing body of evidence indicating that greater use of in situ, remotely sensed, and modelled soil moisture information in fire danger rating systems could lead to better estimates of dynamic live and dead herbaceous fuel loads, more accurate live and dead fuel moisture predictions, earlier warning of wildfire danger, and better forecasts of…
Publication Type: Journal Article
Different approaches make comparing studies of burn severity challenging: a review of methods used to link remotely sensed data with the Composite Burn Index
Year: 2023
The Composite Burn Index (CBI) is commonly linked to remotely sensed data to understand spatial and temporal patterns of burn severity. However, a comprehensive understanding of the tradeoffs between different methods used to model CBI with remotely sensed data is lacking. To help understand the current state of the science, provide a blueprint towards conducting broad- scale meta-analyses, and identify key decision points and potential rationale, we conducted a review of studies that linked remotely sensed data to continuous estimates of burn severity measured with the CBI and related…
Publication Type: Journal Article
Metrics and Considerations for Evaluating How Forest Treatments Alter Wildfire Behavior and Effects
Year: 2023
The influence of forest treatments on wildfire effects is challenging to interpret. This is, in part, because the impact forest treatments have on wildfire can be slight and variable across many factors. Effectiveness of a treatment also depends on the metric considered. We present and define human–fire interaction, fire behavior, and ecological metrics of forest treatment effects on wildfire and discuss important considerations and recommendations for evaluating treatments. We demonstrate these concepts using a case study from the Cameron Peak Fire in Colorado, USA. Pre-fire forest…
Publication Type: Journal Article
Projecting live fuel moisture content via deep learning
Year: 2023
Background: Live fuel moisture content (LFMC) is a key environmental indicator used to monitor for high wildfire risk conditions. Many statistical models have been proposed to predict LFMC from remotely sensed data; however, almost all these estimate current LFMC (nowcasting models). Accurate modelling of LFMC in advance (projection models) would provide wildfire managers with more timely information for assessing and preparing for wildfire risk. Aims: The aim of this study was to investigate the potential for deep learning models to predict LFMC across the continental United States 3 months…
Publication Type: Journal Article
Improving forest sampling strategies for assessment of fuel reduction burning
Year: 2017
Land managers typically make post hoc assessments of the effectiveness of fuel reduction burning (FRB), but often lack a rigorous sampling framework. A general, but untested, assumption is that variability in soil and fuel properties increases from small (∼1 m) to large spatial scales (∼10–100 km). Based on a recently published field-based sampling scheme, we addressed the following questions: (i) How much variability is captured in measurements collected at different spatial scales? (ii) What is the optimal number of sampling plots required for statistically robust characterisation of burnt…
Publication Type: Journal Article
Landscape-scale quantification of fire-induced change in canopy cover following mountain pine beetle outbreak and timber harvest
Year: 2017
Across the western United States, the three primary drivers of tree mortality and carbon balance are bark beetles, timber harvest, and wildfire. While these agents of forest change frequently overlap, uncertainty remains regarding their interactions and influence on specific subsequent fire effects such as change in canopy cover. Acquisition of pre- and post-fire Light Detection and Ranging (LiDAR) data on the 2012 Pole Creek Fire in central Oregon provided an opportunity to isolate and quantify fire effects coincident with specific agents of change. This study characterizes the influence of…
Publication Type: Journal Article
Human exposure and sensitivity to globally extreme wildfire events
Year: 2017
Extreme wildfires have substantial economic, social and environmental impacts, but there is uncertainty whether such events are inevitable features of the Earth’s fire ecology or a legacy of poor management and planning. We identify 478 extreme wildfire events defined as the daily clusters of fire radiative power from MODIS, within a global 10 × 10 km lattice, between 2002 and 2013, which exceeded the 99.997th percentile of over 23 million cases of the ΣFRP 100 km−2 in the MODIS record. These events are globally distributed across all flammable biomes, and are strongly associated with extreme…
Publication Type: Journal Article
A LiDAR-based analysis of the effects of slope, vegetation density, and ground surface roughness on travel rates for wildland firefighter escape route mapping
Year: 2017
Escape routes are essential components of wildland firefighter safety, providing pre-defined pathways to a safety zone. Among the many factors that affect travel rates along an escape route, landscape conditions such as slope, low-lying vegetation density, and ground surface roughness are particularly influential, and can be measured using airborne light detection and ranging (LiDAR) data. In order to develop a robust, quantitative understanding of the effects of these landscape conditions on travel rates, we performed an experiment wherein study participants were timed while walking along a…
Publication Type: Journal Article