Research Database
Displaying 41 - 60 of 76
Examining post-fire vegetation recovery with Landsat time series analysis in three western North American forest types
Year: 2019
Background: Few studies have examined post-fire vegetation recovery in temperate forest ecosystems with Landsat time series analysis. We analyzed time series of Normalized Burn Ratio (NBR) derived from LandTrendr spectral-temporal segmentation fitting to examine post-fire NBR recovery for several wildfires that occurred in three different coniferous forest types in western North America during the years 2000 to 2007. We summarized NBR recovery trends, and investigated the influence of burn severity, post-fire climate, and topography on post-fire vegetation recovery via random forest (RF)…
Publication Type: Journal Article
Mixed-severity wildfire and habitat of an old-forest obligate
Year: 2019
The frequency, extent, and severity of wildfire strongly influence the structure and function of ecosystems. Mixed‐severity fire regimes are the most complex and least understood fire regimes, and variability of fire severity can occur at fine spatial and temporal scales, depending on previous disturbance history, topography, fuel continuity, vegetation type, and weather. During high fire weather in 2013, a complex of mixed‐severity wildfires burned across multiple ownerships within the Klamath‐Siskiyou ecoregion of southwestern Oregon where northern spotted owl (Strix occidentalis caurina)…
Publication Type: Journal Article
Increasing trends in high-severity fire in the southwestern USA from 1984 to 2015
Year: 2019
In the last three decades, over 4.1 million hectares have burned in Arizona and New Mexico and the largest fires in documented history have occurred in the past two decades. Changes in burn severity over time, however, have not been well documented in forest and woodland ecosystems in the southwestern US. Using remotely sensed burn severity data from 1621 fires (>404 ha), we assessed trends from 1984 to 2015 in Arizona and New Mexico in (1) number of fires and total area burned in all vegetation types; (2) area burned, area of high-severity, and percent of high-severity fire in all forest…
Publication Type: Journal Article
Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape
Year: 2018
Many studies have examined how fuels, topography, climate, and fire weather influence fire severity. Less is known about how different forest management practices influence fire severity in multi‐owner landscapes, despite costly and controversial suppression of wildfires that do not acknowledge ownership boundaries. In 2013, the Douglas Complex burned over 19,000 ha of Oregon & California Railroad (O&C) lands in Southwestern Oregon, USA. O&C lands are composed of a checkerboard of private industrial and federal forestland (Bureau of Land Management, BLM) with contrasting…
Publication Type: Journal Article
Multitemporal LiDAR improves estimates of fire severity in forested landscapes
Year: 2018
Landsat-based fire severity maps have limited ecological resolution, which can hinder assessments of change to specific resources. Therefore, we evaluated the use of pre- and post-fire LiDAR, and combined LiDAR with Landsat-based relative differenced Normalized Burn Ratio (RdNBR) estimates, to increase the accuracy and resolution of basal area mortality estimation. We vertically segmented point clouds and performed model selection on spectral and spatial pre- and post-fire LiDAR metrics and their absolute differences. Our best multitemporal LiDAR model included change in mean intensity values…
Publication Type: Journal Article
Spatiotemporal patterns of unburned areas within fire perimeters in the northwestern United States from 1984 to 2014
Year: 2018
A warming climate, fire exclusion, and land cover changes are altering the conditions that produced historical fire regimes and facilitating increased recent wildfire activity in the northwestern United States. Understanding the impacts of changing fire regimes on forest recruitment and succession, species distributions, carbon cycling, and ecosystem services is critical, but challenging across broad spatial scales. One important and understudied aspect of fire regimes is the unburned area within fire perimeters; these areas can function as fire refugia across the landscape during and after…
Publication Type: Journal Article
Improving forest sampling strategies for assessment of fuel reduction burning
Year: 2017
Land managers typically make post hoc assessments of the effectiveness of fuel reduction burning (FRB), but often lack a rigorous sampling framework. A general, but untested, assumption is that variability in soil and fuel properties increases from small (∼1 m) to large spatial scales (∼10–100 km). Based on a recently published field-based sampling scheme, we addressed the following questions: (i) How much variability is captured in measurements collected at different spatial scales? (ii) What is the optimal number of sampling plots required for statistically robust characterisation of burnt…
Publication Type: Journal Article
Human exposure and sensitivity to globally extreme wildfire events
Year: 2017
Extreme wildfires have substantial economic, social and environmental impacts, but there is uncertainty whether such events are inevitable features of the Earth’s fire ecology or a legacy of poor management and planning. We identify 478 extreme wildfire events defined as the daily clusters of fire radiative power from MODIS, within a global 10 × 10 km lattice, between 2002 and 2013, which exceeded the 99.997th percentile of over 23 million cases of the ΣFRP 100 km−2 in the MODIS record. These events are globally distributed across all flammable biomes, and are strongly associated with extreme…
Publication Type: Journal Article
A LiDAR-based analysis of the effects of slope, vegetation density, and ground surface roughness on travel rates for wildland firefighter escape route mapping
Year: 2017
Escape routes are essential components of wildland firefighter safety, providing pre-defined pathways to a safety zone. Among the many factors that affect travel rates along an escape route, landscape conditions such as slope, low-lying vegetation density, and ground surface roughness are particularly influential, and can be measured using airborne light detection and ranging (LiDAR) data. In order to develop a robust, quantitative understanding of the effects of these landscape conditions on travel rates, we performed an experiment wherein study participants were timed while walking along a…
Publication Type: Journal Article
Landscape-scale quantification of fire-induced change in canopy cover following mountain pine beetle outbreak and timber harvest
Year: 2017
Across the western United States, the three primary drivers of tree mortality and carbon balance are bark beetles, timber harvest, and wildfire. While these agents of forest change frequently overlap, uncertainty remains regarding their interactions and influence on specific subsequent fire effects such as change in canopy cover. Acquisition of pre- and post-fire Light Detection and Ranging (LiDAR) data on the 2012 Pole Creek Fire in central Oregon provided an opportunity to isolate and quantify fire effects coincident with specific agents of change. This study characterizes the influence of…
Publication Type: Journal Article
Oregon's State Wood Energy Team: A Grant Program Review
Year: 2016
Oregon's State Wood Energy Team (SWET) is a state-level network supported by the United States Forest Service and led by Oregon Department of Forestry. The purpose of the SWET is to bring together experts in biomass energy to support the successful development and implemen-tation of wood energy systems and businesses. One of the Oregon SWET’S activities is a small grant program for project feasibility, engineering, and construction activities. Six grants were awarded in 2013-2015, totaling $204,700. Oregon State Uni-versity conducted an assessment of this program at the SWET’s request in…
Publication Type: Report
1984–2010 trends in fire burn severity and area for the conterminous US
Year: 2016
Burn severity products created by the Monitoring Trends in Burn Severity (MTBS) project were used to analyse historical trends in burn severity. Using a severity metric calculated by modelling the cumulative distribution of differenced Normalized Burn Ratio (dNBR) and Relativized dNBR (RdNBR) data, we examined burn area and burn severity of 4893 historical fires (1984–2010) distributed across the conterminous US (CONUS) and mapped by MTBS. Yearly mean burn severity values (weighted by area), maximum burn severity metric values, mean area of burn, maximum burn area and total burn area were…
Publication Type: Journal Article
Mapping post-fire habitat characteristics through the fusion of remote sensing tools
Year: 2016
Post-fire snags provide important resources for cavity nesting communities as well as being subject to timber removal through salvage logging practices. Tools that can characterize their distributions along with other features important as wildlife habitat, such as woody shrub cover, would be useful for research and management purposes. Three dimensional lidar data and Landsat time series disturbance products have both shown varying promise in their ability to characterize aspects of dead biomass and understory cover, but studies exploring the combination of the remote sensing datasets…
Publication Type: Journal Article
Relating Fire-Caused Change in Forest Structure to Remotely Sensed Estimates of Fire Severity
Year: 2016
Fire severity maps are an important tool for understanding fire effects on a landscape. The relative differenced normalized burn ratio (RdNBR) is a commonly used severity index in California forests, and is typically divided into four categories: unchanged, low, moderate, and high. RdNBR is often calculated twice—from images collected the year of the fire (initial assessment) and during the summer of the year after the fire (extended assessment). Both collection times have been calibrated to field measurements, but field data with both pre-fire and post-fire observations of matched plots are…
Publication Type: Journal Article
Review of broad-scale drought monitoring of forests: Toward an integrated data mining approach
Year: 2016
Efforts to monitor the broad-scale impacts of drought on forests often come up short. Drought is a direct stressor of forests as well as a driver of secondary disturbance agents, making a full accounting of drought impacts challenging. General impacts can be inferred from moisture deficits quantified using precipitation and temperature measurements. However, derived meteorological indices may not meaningfully capture drought impacts because drought responses can differ substantially among species, sites and regions. Meteorology-based approaches also require the characterization of current…
Publication Type: Journal Article
Administrative and Judicial Review of NEPA Decisions: Risk Factors and Risk Minimizing Strategies for the Forest Service
Year: 2016
Changes in land use and management practices throughout the past century–in addition to drought and other stressors exacerbated by climate change–have degraded the nation’s forests and led to overgrowth and accumulation of hazardous fuels (GAO 2015). Because of these fuels, some forests now see high-severity fires that threaten communities as well as important natural and cultural resources. Restoring desired vegetation conditions, which can often be accomplished through mechanical thinning or prescribed burning, are central objectives of restoration and fuel reduction projects carried out by…
Publication Type: Report
Drivers of Wildfire Suppression Costs: Literature Review and Annotated Bibliography
Year: 2015
Over the past century, wildland fire management has been core to the mission of federal land management agencies. In recent decades, however, federal spending on wildfire suppression has increased dramatically; suppression spending that on average accounted for less than 20 percent of the USFS’s discretionary funds prior to 2000 had grown to 43 percent of discretionary funds by 2008 (USDA 2009), and 51 percent in 2014 (USDA 2014). Rising suppression costs have created budgetary shortfalls and conflict as money “borrowed” from other budgets often cannot be paid back in full, and resources for…
Publication Type: Report
Tracking Progress: The Monitoring Process Used in Collaborative Forest Landscape Restoration Projects in the Pacific Northwest
Year: 2015
Several trends have emerged in recent years that affect the management of the National Forest System, particularly in the western U.S. One is the recognition of landscapes departed from a natural range of variation, especially with implications for wildfire management. Another trend is the economic decline in many rural communities of the western U.S., particularly those based on natural resource activities such as timber production. Finally, there is increasing acceptance of collaborative approaches to forest management. Collaborative approaches endeavor to increase mutual learning among…
Publication Type: Report
Social and economic monitoring for the Lakeview Stewardship Collaborative Forest Landscape Restoration Project
Year: 2015
The Fremont-Winema National Forest and the Lakeview Stewardship Group were awarded funding under the Collaborative Forest Landscape Restoration (CFLR) Program in 2012 for the 662,289 acre Lakeview Stewardship Project. The CFLR Program, administered by the U.S. Forest Service, seeks to increase restoration activities to improve the ecological conditions of forested landscapes while contributing to the social and economic well-being of communities located around national forests.The outcomes from CFLR project activities are monitored both through a standardized reporting framework established…
Publication Type: Report
Sources and implications of bias and uncertainty in a century of US wildfire activity data
Year: 2015
Analyses to identify and relate trends in wildfire activity to factors such as climate, population, land use or land cover and wildland fire policy are increasingly popular in the United States. There is a wealth of US wildfire activity data available for such analyses, but users must be aware of inherent reporting biases, inconsistencies and uncertainty in the data in order to maximise the integrity and utility of their work. Data for analysis are generally acquired from archival summary reports of the federal or interagency fire organisations; incident-level wildfire reporting systems of…
Publication Type: Journal Article