Research Database
Displaying 21 - 40 of 126
Carbon, climate, and natural disturbance: a review of mechanisms, challenges, and tools for understanding forest carbon stability in an uncertain future
Year: 2024
In this review, we discuss current research on forest carbon risk from natural disturbance under climate change for the United States, with emphasis on advancements in analytical mapping and modeling tools that have potential to drive research for managing future long-term stability of forest carbon. As a natural mechanism for carbon storage, forests are a critical component of meeting climate mitigation strategies designed to combat anthropogenic emissions. Forests consist of long-lived organisms (trees) that can store carbon for centuries or more. However, trees have finite lifespans, and…
Publication Type: Journal Article
A fast spectral recovery does not necessarily indicate post-fire forest recovery
Year: 2024
BackgroundClimate change has increased wildfire activity in the western USA and limited the capacity for forests to recover post-fire, especially in areas burned at high severity. Land managers urgently need a better understanding of the spatiotemporal variability in natural post-fire forest recovery to plan and implement active recovery projects. In burned areas, post-fire “spectral recovery”, determined by examining the trajectory of multispectral indices (e.g., normalized burn ratio) over time, generally corresponds with recovery of multiple post-fire vegetation types, including trees and…
Publication Type: Journal Article
Long-term sensitivity of ponderosa pine axial resin ducts to harvesting and prescribed burning
Year: 2024
Forest restoration treatments primarily aimed at reducing fuel load and preventing high-severity wildfires can also influence resilience to other disturbances. Many pine forests in temperate regions are subject to tree-killing bark beetle outbreaks (e.g., Dendroctonus, Ips), whose frequency and intensity are expected to increase with future climatic changes. Restoration treatments have the potential to increase resistance to bark beetle attacks, yet the underlying mechanisms of this response are still unclear. While the effect of forest restoration treatments on tree growth…
Publication Type: Journal Article
Pixels to pyrometrics: UAS-derived infrared imagery to evaluate and monitor prescribed fire behaviour and effects
Year: 2024
Background: Prescribed fire is vital for fuel reduction and ecological restoration, but the effectiveness and fine-scale interactions are poorly understood. Aims: We developed methods for processing uncrewed aircraft systems (UAS) imagery into spatially explicit pyrometrics, including measurements of fuel consumption, rate of spread, and residence time to quantitatively measure three prescribed fires. Methods: We collected infrared (IR) imagery continuously (0.2 Hz) over prescribed burns and one experimental calibration burn, capturing…
Publication Type: Journal Article
Soil microbiome feedbacks during disturbance-driven forest ecosystem conversion
Year: 2024
Disturbances cause rapid changes to forests, with different disturbance types and severities creating unique ecosystem trajectories that can impact the underlying soil microbiome. Pile burning—the combustion of logging residue on the forest floor—is a common fuel reduction practice that can have impacts on forest soils analogous to those following high-severity wildfire. Further, pile burning following clear-cut harvesting can create persistent openings dominated by nonwoody plants surrounded by dense regenerating conifer forest. A paired 60-year chronosequence of burn scar openings and…
Publication Type: Journal Article
Biogeographic patterns of daily wildfire spread and extremes across North America
Year: 2024
Introduction: Climate change is predicted to increase the frequency of extreme single-day fire spread events, with major ecological and social implications. In contrast with well-documented spatio-temporal patterns of wildfire ignitions and perimeters, daily progression remains poorly understood across continental spatial scales, particularly for extreme single-day events (“blow ups”). Here, we characterize daily wildfire spread across North America, including occurrence of extreme single-day events, duration and seasonality of fire and extremes, and ecoregional climatic…
Publication Type: Journal Article
Road fragment edges enhance wildfire incidence and intensity, while suppressing global burned area
Year: 2024
Landscape fragmentation is statistically correlated with both increases and decreases in wildfire burned area (BA). These different directions-of-impact are not mechanistically understood. Here, road density, a land fragmentation proxy, is implemented in a CMIP6 coupled land-fire model, to represent fragmentation edge effects on fire-relevant environmental variables. Fragmentation caused modelled BA changes of over ±10% in 16% of [0.5°] grid-cells. On average, more fragmentation decreased net BA globally (−1.5%), as estimated empirically. However, in recently-deforested tropical areas,…
Publication Type: Journal Article
Ladder fuels rather than canopy volumes consistently predict wildfire severity even in extreme topographic-weather conditions
Year: 2024
Drivers of forest wildfire severity include fuels, topography and weather. However, because only fuels can be actively managed, quantifying their effects on severity has become an urgent research priority. Here we employed GEDI spaceborne lidar to consistently assess how pre-fire forest fuel structure affected wildfire severity across 42 California wildfires between 2019–2021. Using a spatial-hierarchical modeling framework, we found a positive concave-down relationship between GEDI-derived fuel structure and wildfire severity, marked by increasing severity with greater fuel loads until a…
Publication Type: Journal Article
Disentangling drivers of annual grass invasion: Abiotic susceptibility vs. fire-induced conversion to cheatgrass dominance in the sagebrush biome
Year: 2024
Invasive annual grasses are often facilitated by fire, yet they can become ecologically dominant in susceptible locations even in the absence of fire. We used an extensive vegetation plot database to model susceptibility to the invasive annual grass cheatgrass (Bromus tectorum L.) in the sagebrush biome as a function of climate and soil water availability variables. We built random forest models predicting cheatgrass presence or dominance (>15 % relative cover) under unburned (37,219 plots) and burned conditions (6340 plots). We mapped predicted probability of cheatgrass…
Publication Type: Journal Article
Exploring the use of satellite Earth observation active wildland fire hotspot data via open access web platforms
Year: 2024
Globally, managing wildland fire is increasing in complexity. Satellite Earth Observation (EO) data, specifically active fire ‘hotspot’ data, is often used to inform wildland fire management. This study explores hotspot data usage via web traffic data (‘user counts’) for the FIRMS, GWIS and EFFIS web portals between September 2019 and April 2023. Global active fire data use is characterized by multi-month periods of relatively low, stable user counts, interspersed with periodic spikes (4.1x median monthly activity) of activity broadly aligned with the North American / European fire season (…
Publication Type: Journal Article
Carbon emissions from the 2023 Canadian wildfires
Year: 2024
The 2023 Canadian forest fires have been extreme in scale and intensity with more than seven times the average annual area burned compared to the previous four decades. Here, we quantify the carbon emissions from these fires from May to September 2023 on the basis of inverse modelling of satellite carbon monoxide observations. We find that the magnitude of the carbon emissions is 647 TgC (570–727 TgC), comparable to the annual fossil fuel emissions of large nations, with only India, China and the USA releasing more carbon per year. We find that widespread hot–dry weather was a principal…
Publication Type: Journal Article
Stream chemical response is mediated by hydrologic connectivity and fire severity in a Pacific Northwest forest
Year: 2024
Large-scale wildfires are becoming increasingly common in the wet forests of the Pacific Northwest (USA), with predicted increases in fire prevalence under future climate scenarios. Wildfires can alter streamflow response to precipitation and mobilize water quality constituents, which pose a risk to aquatic ecosystems and downstream drinking water treatment. Research often focuses on the impacts of high-severity wildfires, with stream biogeochemical responses to low- and mixed-severity fires often understudied, particularly during seasonal shifts in hydrologic connectivity between hillslopes…
Publication Type: Journal Article
Molecular shifts in dissolved organic matter along a burn severity continuum for common land cover types in the Pacific Northwest, USA
Year: 2024
Increasing wildfire severity is of growing concern in the western United States, with consequences for the production, composition, and mobilization of dissolved organic matter (DOM) from terrestrial to aquatic systems. Our current understanding of wildfire impacted DOM (often termed pyrogenic DOM) composition is largely built from temperature-based studies that can be difficult to extrapolate to field conditions, which are often defined by ‘burn severity’, or the post-wildfire impact observed at a site. Thus, burn severity can encapsulate a broader range of fire and environmental conditions…
Publication Type: Journal Article
Remote sensing applications for prescribed burn research
Year: 2024
Prescribed burning is a key management strategy within fire-adapted systems, and improved monitoring approaches are needed to evaluate its effectiveness in achieving social-ecological outcomes. Remote sensing provides opportunities to analyse the impacts of prescribed burning, yet a comprehensive understanding of the applications of remote sensing for prescribed burn research is lacking. We conduct a literature review of 120 peer-reviewed publications to synthesise the research aims, methodologies, limitations and future directions of remote sensing for the analysis of prescribed fire.…
Publication Type: Journal Article
Prefire Drought Intensity Drives Postfire Recovery and Mortality in Pinus monticola and Pseudotsuga menziesii Saplings
Year: 2024
Increasing frequency of droughts and wildfire are sparking concerns that these compounded disturbance events are pushing forested ecosystems beyond recovery. An improved understanding of how compounded events affect tree physiology and mortality is needed given the reliance of fire management planning on accurate estimates of postfire tree mortality. In this study, we use a toxicological dose-response approach to quantify the impact of variable-intensity drought and fire on the physiology and mortality of Pinus monticola and Pseudotsuga menziesii saplings. We show that the…
Publication Type: Journal Article
The fastest-growing and most destructive fires in the US (2001 to 2020)
Year: 2024
The most destructive and deadly wildfires in US history were also fast. Using satellite data, we analyzed the daily growth rates of more than 60,000 fires from 2001 to 2020 across the contiguous US. Nearly half of the ecoregions experienced destructive fast fires that grew more than 1620 hectares in 1 day. These fires accounted for 78% of structures destroyed and 61% of suppression costs ($18.9 billion). From 2001 to 2020, the average peak daily growth rate for these fires more than doubled (+249% relative to 2001) in the Western US. Nearly 3 million structures were within 4 kilometers of a…
Publication Type: Journal Article
Optimising disaster response: opportunities and challenges with Uncrewed Aircraft System (UAS) technology in response to the 2020 Labour Day wildfires in Oregon, USA
Year: 2024
BackgroundThe expanding use of Uncrewed Aircraft System (UAS) technology in disaster response shows its immense potential to enhance emergency management. However, there is limited documentation on the challenges and data management procedures related to UAS operation.AimsThis manuscript documents and analyses the operational, technical, political, and social challenges encountered during the deployment of UAS, providing insights into the complexities of using these technologies in disaster situations.MethodsThis manuscript documents and…
Publication Type: Journal Article
Budworms, beetles and wildfire: Disturbance interactions influence the likelihood of insect-caused disturbances at a subcontinental scale
Year: 2024
Irruptive forest insects are a leading biotic disturbance across temperate and boreal forests. Outbreaks of forest insects are becoming more frequent and extensive due to anthropogenic drivers (e.g. climate and land-use), perhaps increasing the likelihood that forests will experience multiple insect-caused disturbances. Across the fire-prone Douglas-fir forests of western North America, recent outbreaks of the western spruce budworm and Douglas-fir beetle have impacted large expanses of forests, with a higher degree of overlap than expected in some ecoregions. Outbreaks of both insects are…
Publication Type: Journal Article
Unlocking the potential of Airborne LiDAR for direct assessment of fuel bulk density and load distributions for wildfire hazard mapping
Year: 2024
Large-scale mapping of fuel load and fuel vertical distribution is essential for assessing fire danger, setting strategic goals and actions, and determining long-term resource needs. The Airborne LiDAR system can fulfil such goal by accurately capturing the three-dimensional arrangement of vegetation at regional and national scales. We developed a novel method to estimate multiple metrics of fuel load and vertical bulk density distribution for any type of vegetation. The approach uses Beer-Lambert law for inverting the ALS point cloud into vertical plant area density profiles, which are…
Publication Type: Journal Article
Global variation in ecoregion flammability thresholds
Year: 2024
Anthropogenic climate change is altering the state of worldwide fire regimes, including by increasing the number of days per year when vegetation is dry enough to burn. Indices representing the percent moisture content of dead fine fuels as derived from meteorological data have been used to assess geographic patterns and temporal trends in vegetation flammability. To date, this approach has assumed a single flammability threshold, typically between 8 and 12%, controlling fire potential regardless of the vegetation type or climate domain. Here we use remotely sensed burnt area products and a…
Publication Type: Journal Article