Research Database
Displaying 101 - 120 of 204
Transformation of western hemlock (Tsuga heterophylla) tree crowns by dwarf mistletoe (Arceuthobium tsugense, Viscaceae)
Year: 2020
Dwarf mistletoes (Arceuthobium species) are arboreal, hemiparasitic plants of conifers that can change the structure and function of the tree crown. Hemlock dwarf mistletoe (Arceuthobium tsugense subsp. tsugense) principally parasitizes western hemlock (Tsuga heterophylla) and effects 10.8% of all western hemlock trees in Oregon, USA. In this study, we climbed 16 western hemlock trees (age 97–321 years, height 33–54.7 m) across a gradient of infection (0%–100% of branches infected) and measured occurrence of all dwarf mistletoe infections, dwarf mistletoe caused deformities, foliage, branch…
Publication Type: Journal Article
Near-future forest vulnerability to drought and fire varies across the western United States
Year: 2019
Recent prolonged droughts and catastrophic wildfires in the western United States have raised concerns about the potential for forest mortality to impact forest structure, forest ecosystem services, and the economic vitality of communities in the coming decades. We used the Community Land Model (CLM) to determine forest vulnerability to mortality from drought and fire by the year 2049. We modified CLM to represent 13 major forest types in the western United States and ran simulations at a 4‐km grid resolution, driven with climate projections from two general circulation models under one…
Publication Type: Journal Article
A System Dynamics Model Examining Alternative Wildfire Response Policies
Year: 2019
In this paper, we develop a systems dynamics model of a coupled human and natural fire-prone system to evaluate changes in wildfire response policy. A primary motivation is exploring the implications of expanding the pace and scale of using wildfires as a forest restoration tool. We implement a model of a forested system composed of multiple successional classes, each with different structural characteristics and propensities for burning at high severity. We then simulate a range of alternative wildfire response policies, which are defined as the combination of a target burn rate (or…
Publication Type: Journal Article
Designing Operationally Relevant Daily Large Fire Containment Strategies Using Risk Assessment Results
Year: 2019
In this study, we aim to advance the optimization of daily large fire containment strategies for ground-based suppression resources by leveraging fire risk assessment results commonly used by fire managers in the western USA. We begin from an existing decision framework that spatially overlays fire risk assessment results with pre-identified potential wildland fire operational delineations (PODs), and then clusters PODs into a response POD (rPOD) using a mixed integer program (MIP) model to minimize expected loss. We improve and expand upon this decision framework through enhanced fire…
Publication Type: Journal Article
Examining post-fire vegetation recovery with Landsat time series analysis in three western North American forest types
Year: 2019
Background: Few studies have examined post-fire vegetation recovery in temperate forest ecosystems with Landsat time series analysis. We analyzed time series of Normalized Burn Ratio (NBR) derived from LandTrendr spectral-temporal segmentation fitting to examine post-fire NBR recovery for several wildfires that occurred in three different coniferous forest types in western North America during the years 2000 to 2007. We summarized NBR recovery trends, and investigated the influence of burn severity, post-fire climate, and topography on post-fire vegetation recovery via random forest (RF)…
Publication Type: Journal Article
Should we leave now? Behavioral factors in evacuation under wildfire threat
Year: 2019
Wildfires pose a serious threat to life in many countries. For police, fire and emergency services authorities in most jurisdictions in North America and Australia evacuation is now the option that is preferred overwhelmingly. Wildfire evacuation modeling can assist authorities in planning evacuation responses to future threats. Understanding residents' behavior under wildfire threat may assist in wildfire evacuation modeling. This paper reviews North American and Australian research into wildfire evacuation behavior published between January 2005 and June 2017. Wildfire evacuation policies…
Publication Type: Journal Article
Mixed-severity wildfire and habitat of an old-forest obligate
Year: 2019
The frequency, extent, and severity of wildfire strongly influence the structure and function of ecosystems. Mixed‐severity fire regimes are the most complex and least understood fire regimes, and variability of fire severity can occur at fine spatial and temporal scales, depending on previous disturbance history, topography, fuel continuity, vegetation type, and weather. During high fire weather in 2013, a complex of mixed‐severity wildfires burned across multiple ownerships within the Klamath‐Siskiyou ecoregion of southwestern Oregon where northern spotted owl (Strix occidentalis caurina)…
Publication Type: Journal Article
Use of Science and Modeling by Practitioners in Landscape-Scale Management Decisions
Year: 2019
Scientific knowledge and tools have central roles in contemporary federal forest programs that promote restoration in large landscapes and across ownerships. Although we know much about the role of science in decisionmaking and ways that science can be better linked to practice, we know less about manager perspectives about science and science tools, and the perceived role of both in planning. We surveyed Forest Service resource managers in the western United States to address this knowledge gap. Respondents engaged most frequently with science via reading research publications; direct…
Publication Type: Journal Article
Air-quality challenges of prescribed fire in the complex terrain and wildland urban interface surrounding Bend, Oregon
Year: 2019
Prescribed fires in forest ecosystems can negatively impact human health and safety by transporting smoke downwind into nearby communities. Smoke transport to communities is known to occur around Bend, Oregon, United States of America (USA), where burning at the wildland–urban interface in the Deschutes National Forest resulted in smoke intrusions into populated areas. The number of suitable days for prescribed fires is limited due to the necessity for moderate weather conditions, as well as wind directions that do not carry smoke into Bend. To better understand the conditions leading to…
Publication Type: Journal Article
Increasing trends in high-severity fire in the southwestern USA from 1984 to 2015
Year: 2019
In the last three decades, over 4.1 million hectares have burned in Arizona and New Mexico and the largest fires in documented history have occurred in the past two decades. Changes in burn severity over time, however, have not been well documented in forest and woodland ecosystems in the southwestern US. Using remotely sensed burn severity data from 1621 fires (>404 ha), we assessed trends from 1984 to 2015 in Arizona and New Mexico in (1) number of fires and total area burned in all vegetation types; (2) area burned, area of high-severity, and percent of high-severity fire in all forest…
Publication Type: Journal Article
Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape
Year: 2018
Many studies have examined how fuels, topography, climate, and fire weather influence fire severity. Less is known about how different forest management practices influence fire severity in multi‐owner landscapes, despite costly and controversial suppression of wildfires that do not acknowledge ownership boundaries. In 2013, the Douglas Complex burned over 19,000 ha of Oregon & California Railroad (O&C) lands in Southwestern Oregon, USA. O&C lands are composed of a checkerboard of private industrial and federal forestland (Bureau of Land Management, BLM) with contrasting…
Publication Type: Journal Article
Multitemporal LiDAR improves estimates of fire severity in forested landscapes
Year: 2018
Landsat-based fire severity maps have limited ecological resolution, which can hinder assessments of change to specific resources. Therefore, we evaluated the use of pre- and post-fire LiDAR, and combined LiDAR with Landsat-based relative differenced Normalized Burn Ratio (RdNBR) estimates, to increase the accuracy and resolution of basal area mortality estimation. We vertically segmented point clouds and performed model selection on spectral and spatial pre- and post-fire LiDAR metrics and their absolute differences. Our best multitemporal LiDAR model included change in mean intensity values…
Publication Type: Journal Article
Advancing the Science of Wildland Fire Dynamics Using Process-Based Models
Year: 2018
As scientists and managers seek to understand fire behavior in conditions that extend beyond the limits of our current empirical models and prior experiences, they will need new tools that foster a more mechanistic understanding of the processes driving fire dynamics and effects. Here we suggest that process-based models are powerful research tools that are useful for investigating a large number of emerging questions in wildland fire sciences. These models can play a particularly important role in advancing our understanding, in part, because they allow their users to evaluate the potential…
Publication Type: Journal Article
Landscapes 101: Understanding Landscape Approaches to Forest Restoration and Management
Year: 2018
About Go Big or Go Home?: The goals of this research project were to analyze how public land managers and stakeholders in Oregon’s east Cascades can plan and manage at landscape scales using scientific research and participatory simulation modeling (Envision). To learn more, visit: gbgh.forestry.oregonstate.edu
Publication Type: Report
Tree traits influence response to fire severity in the western Oregon Cascades, USA
Year: 2018
Wildfire is an important disturbance process in western North American conifer forests. To better understand forest response to fire, we used generalized additive models to analyze tree mortality and long-term (1 to 25 years post-fire) radial growth patterns of trees that survived fire across a burn severity gradient in the western Cascades of Oregon. We also used species-specific leaf-area models derived from sapwood estimates to investigate the linkage between photosynthetic capacity and growth response. Larger trees and shade intolerant trees had a higher probability of surviving fire.…
Publication Type: Journal Article
Science and Collaborative Processes
Year: 2018
About Go Big or Go Home?: The goals of this research project were to analyze how public land managers and stakeholders in Oregon’s east Cascades can plan and manage at landscape scales using scientific research and participatory simulation modeling (Envision). To learn more, visit: gbgh.forestry.oregonstate.edu
Publication Type: Report
The Weather Conditions for Desired Smoke Plumes at a FASMEE Burn Site
Year: 2018
Weather is an important factor that determines smoke development, which is essential information for planning smoke field measurements. This study identifies the synoptic systems that would favor to produce the desired smoke plumes for the Fire and Smoke Model Evaluation Experiment (FASMEE). Daysmoke and PB-Piedmont (PB-P) models are used to simulate smoke plume evolution during the day time and smoke drainage and fog formation during the nighttime for hypothetical prescribed burns on 5–8 February 2011 at the Stewart Army Base in the southeastern United States. Daysmoke simulation is…
Publication Type: Journal Article
Key Findings and Messages from the Go Big or Go Home? Project
Year: 2018
About Go Big or Go Home?: The goals of this research project were to analyze how public land managers and stakeholders in Oregon’s east Cascades can plan and manage at landscape scales using scientific research and participatory simulation modeling (Envision). To learn more, visit: gbgh.forestry.oregonstate.edu
Publication Type: Report
Spatiotemporal patterns of unburned areas within fire perimeters in the northwestern United States from 1984 to 2014
Year: 2018
A warming climate, fire exclusion, and land cover changes are altering the conditions that produced historical fire regimes and facilitating increased recent wildfire activity in the northwestern United States. Understanding the impacts of changing fire regimes on forest recruitment and succession, species distributions, carbon cycling, and ecosystem services is critical, but challenging across broad spatial scales. One important and understudied aspect of fire regimes is the unburned area within fire perimeters; these areas can function as fire refugia across the landscape during and after…
Publication Type: Journal Article
Fire and tree death: understanding and improving modeling of fire-induced tree mortality
Year: 2018
Each year wildland fires kill and injure trees on millions of forested hectares globally, affecting plant and animal biodiversity, carbon storage, hydrologic processes, and ecosystem services. The underlying mechanisms of fire-caused tree mortality remain poorly understood, however, limiting the ability to accurately predict mortality and develop robust modeling applications, especially under novel future climates. Virtually all post-fire tree mortality prediction systems are based on the same underlying empirical model described in Ryan and Reinhardt (1988 Can. J. For. Res. 18 1291–7), which…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 4
- 5
- 6
- 7
- 8
- …
- Next page
- Last page