Research Database
Displaying 21 - 40 of 124
Thinning and Managed Burning Enhance Forest Resilience in Northeastern California
Year: 2024
Understanding and quantifying the resilience of forests to disturbances are increasingly important for forest management. Historical fire suppression, logging, and other land uses have increased densities of shade tolerant trees and fuel buildup in the western United States, which has reduced the resilience of these forests to natural disturbances. One way to mitigate this problem is to use fuel treatments such as stand thinning and prescribed burning. In this study, we investigated changes in forest structure in the Lassen and Plumas National Forests of northern California following a large…
Publication Type: Journal Article
Stand diversity increases pine resistance and resilience to compound disturbance
Year: 2024
BackgroundDrought, fire, and insects are increasing mortality of pine species throughout the northern temperate zone as climate change progresses. Tree survival may be enhanced by forest diversity, with growth rates often higher in mixed stands, but whether tree defenses are likewise aided remains in question. We tested how forest diversity-productivity patterns relate to growth and defense over three centuries of climate change, competition, wildfire, and bark beetle attack. We used detailed census data from a fully mapped 25.6-ha forest dynamics plot in California, USA to…
Publication Type: Journal Article
Carbon emissions from the 2023 Canadian wildfires
Year: 2024
The 2023 Canadian forest fires have been extreme in scale and intensity with more than seven times the average annual area burned compared to the previous four decades. Here, we quantify the carbon emissions from these fires from May to September 2023 on the basis of inverse modelling of satellite carbon monoxide observations. We find that the magnitude of the carbon emissions is 647 TgC (570–727 TgC), comparable to the annual fossil fuel emissions of large nations, with only India, China and the USA releasing more carbon per year. We find that widespread hot–dry weather was a principal…
Publication Type: Journal Article
The impacts of rising vapour pressure deficit in natural and managed ecosystems
Year: 2024
An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land–atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the…
Publication Type: Journal Article
Wildfire management decisions outweigh mechanical treatment as the keystone to forest landscape adaptation
Year: 2024
BackgroundModern land management faces unprecedented uncertainty regarding future climates, novel disturbance regimes, and unanticipated ecological feedbacks. Mitigating this uncertainty requires a cohesive landscape management strategy that utilizes multiple methods to optimize benefits while hedging risks amidst uncertain futures. We used a process-based landscape simulation model (LANDIS-II) to forecast forest management, growth, climate effects, and future wildfire dynamics, and we distilled results using a decision support tool allowing us to examine tradeoffs between alternative…
Publication Type: Journal Article
Human driven climate change increased the likelihood of the 2023 record area burned in Canada
Year: 2024
In 2023, wildfires burned 15 million hectares in Canada, more than doubling the previous record. These wildfires caused a record number of evacuations, unprecedented air quality impacts across Canada and the northeastern United States, and substantial strain on fire management resources. Using climate models, we show that human-induced climate change significantly increased the likelihood of area burned at least as large as in 2023 across most of Canada, with more than two-fold increases in the east and southwest. The long fire season was more than five times as likely and the large areas…
Publication Type: Journal Article
Long-term frequent fire and cattle grazing alter dry forest understory vegetation
Year: 2024
Understanding fire and large herbivore interactions in interior western forests is critical, owing to the extensive and widespread co-occurrence of these two disturbance types and multiple present and future implications for forest resilience, conservation and restoration. However, manipulative studies focused on interactions and outcomes associated with these two disturbances are rare in forested rangelands. We investigated understory vegetation response to 5-year spring and fall prescribed fire and domestic cattle grazing exclusion in ponderosa pine stands and reported long-term responses,…
Publication Type: Journal Article
Bacterial Emission Factors: A Foundation for the Terrestrial-Atmospheric Modeling of Bacteria Aerosolized by Wildland Fires
Year: 2024
Wildland fire is a major global driver in the exchange of aerosols between terrestrial environments and the atmosphere. This exchange is commonly quantified using emission factors or the mass of a pollutant emitted per mass of fuel burned. However, emission factors for microbes aerosolized by fire have yet to be determined. Using bacterial cell concentrations collected on unmanned aircraft systems over forest fires in Utah, USA, we determine bacterial emission factors (BEFs) for the first time. We estimate that 1.39 × 1010 and 7.68 × 1011 microbes are emitted for each Mg of biomass consumed…
Publication Type: Journal Article
Evacuation decisions of tourists in wildfire scenarios
Year: 2024
This paper investigates the factors affecting evacuation behaviour of tourists in wildfire scenarios by conducting a scoping review using the Preferred Reporting Items for Systematic reviews and Meta-Analysis approach - here using only its extension for scoping reviews. A total of 524 scientific papers were identified in the Web of Science and Scopus and 23 studies were fully reviewed. Key variables affecting the evacuation behaviour of tourists included property attachment, past experience and preparedness, safety culture, risk perception, individual and group socio-demographics, interaction…
Publication Type: Journal Article
Global rise in forest fire emissions linked to climate change in the extratropics
Year: 2024
Climate change increases fire-favorable weather in forests, but fire trends are also affected by multiple other controlling factors that are difficult to untangle. We use machine learning to systematically group forest ecoregions into 12 global forest pyromes, with each showing distinct sensitivities to climatic, human, and vegetation controls. This delineation revealed that rapidly increasing forest fire emissions in extratropical pyromes, linked to climate change, offset declining emissions in tropical pyromes during 2001 to 2023. Annual emissions tripled in one extratropical pyrome due to…
Publication Type: Journal Article
‘Mind the Gap’—reforestation needs vs. reforestation capacity in the western United States
Year: 2024
Tree establishment following severe or stand-replacing disturbance is critical for achieving U.S. climate change mitigation goals and for maintaining the co-benefits of intact forest ecosystems. In many contexts, natural post-fire tree regeneration is sufficient to maintain forest cover and associated ecosystem services, but increasingly the pattern and scale of disturbance exceeds ecological thresholds and active reforestation may be warranted. Our capacity to plant trees, however, is not keeping pace with reforestation needs. This shortfall is uniquely apparent in the western U.S., where…
Publication Type: Journal Article
Ability of seedlings to survive heat and drought portends future demographic challenges for five southwestern US conifers
Year: 2023
Climate change and disturbance are altering forests and the rates and locations of tree regeneration. In semi-arid forests of the southwestern USA, limitations imposed by hot and dry conditions are likely to influence seedling survival. We examined how the survival of 1-year seedlings of five southwestern US conifer species whose southwestern distributions range from warmer and drier woodlands and forests (Pinus edulis Engelm., Pinus ponderosa Douglas ex C. Lawson) to cooler and wetter subalpine forests (Pseudotsuga menziesii (Mirb.) Franco, Abies concolor…
Publication Type: Journal Article
Mechanical thinning restores ecological functions in a seasonally dry ponderosa pine forest in the inland Pacific Northwest, USA
Year: 2023
An increasingly important goal of federal land managers in seasonally dry forests of the western US is restoring forest resilience. In this study, we quantified the degree to which a thinning treatment in a dry forest of eastern Oregon restored aspects of forest resilience by focusing on key functional attributes of our study system. First, we measured several physiological responses of overstory trees that are associated with resilience, including radial growth, resin production, abundance of non-structural carbohydrates (NSC), and leaf area. Second, we investigated understory vegetation…
Publication Type: Journal Article
Consistent spatial scaling of high-severity wildfire can inform expected future patterns of burn severity
Year: 2023
Increasing wildfire activity in forests worldwide has driven urgency in understanding current and future fire regimes. Spatial patterns of area burned at high severity strongly shape forest resilience and constitute a key dimension of fire regimes, yet remain difficult to predict. To characterize the range of burn severity patterns expected within contemporary fire regimes, we quantified scaling relationships relating fire size to patterns of burn severity. Using 1615 fires occurring across the Northwest United States between 1985 and 2020, we evaluated scaling relationships within fire…
Publication Type: Journal Article
Fire-regime variability and ecosystem resilience over four millennia in a Rocky Mountain subalpine watershed
Year: 2023
- Wildfires strongly influence forest ecosystem processes, including carbon and nutrient cycling, and vegetation dynamics. As fire activity increases under changing climate conditions, the ecological and biogeochemical resilience of many forest ecosystems remains unknown.
- To investigate the resilience of forest ecosystems to changing climate and wildfire activity over decades to millennia, we developed a 4800-year high-resolution lake-sediment record from Silver Lake, Montana, USA (47.360° N, 115.566° W). Charcoal particles, pollen grains, element concentrations and stable…
Publication Type: Journal Article
Shaded fuel breaks create wildfire-resilient forest stands: lessons from a long-term study in the Sierra Nevada
Year: 2023
Background In California’s mixed-conifer forests, fuel reduction treatments can successfully reduce fire severity, bolster forest resilience, and make lasting changes in forest structure. However, current understanding of the duration of treatment effectiveness is lacking robust empirical evidence. We leveraged data collected from 20-year-old forest monitoring plots within fuel treatments that captured a range of wildfire occurrence (i.e., not burned, burned once, or burned twice) following initial plot establishment and overstory thinning and prescribed fire treatments. Results Initial…
Publication Type: Journal Article
Terrestrial carbon dynamics in an era of increasing wildfire
Year: 2023
In an increasingly flammable world, wildfire is altering the terrestrial carbon balance. However, the degree to which novel wildfire regimes disrupt biological function remains unclear. Here, we synthesize the current understanding of above- and belowground processes that govern carbon loss and recovery across diverse ecosystems. We find that intensifying wildfire regimes are increasingly exceeding biological thresholds of resilience, causing ecosystems to convert to a lower carbon-carrying capacity. Growing evidence suggests that plants compensate for fire damage by allocating carbon…
Publication Type: Journal Article
The outsized role of California’s largest wildfires in changing forest burn patterns and coarsening ecosystem scale
Year: 2023
Highlights • We evaluated trends for 1,809 fires that burned 1985–2020 across California forests. • Top 1% of fires by size burned 47% of total area burned across the study period. • Top 1% (18 fires) produced 58% of high and 42% of low-moderate severity area. • Top 1% created novel landscape patterns of large burn severity patches. • These large fires create new opportunities for managing forest resilience. Although recent large wildfires in California forests are well publicized in media and scientific literature, their cumulative effects on forest structure and implications for forest…
Publication Type: Journal Article
Community Forests advance local wildfire governance and proactive management in British Columbia, Canada
Year: 2023
As wildfires are increasingly causing negative impacts to communities and their livelihoods, many communities are demanding more proactive and locally driven approaches to address wildfire risk. This marks a shift away from centralized governance models where decision-making is concentrated in government agencies that prioritize reactive wildfire suppression. In British Columbia (BC), Canada, Community Forests—a long-term, area-based tenure granted to Indigenous and/or local communities—are emerging as local leaders facilitating proactive wildfire management. To explore the factors that are…
Restoration and Hazardous Fuel Reduction, Risk Assessment and Analysis, Social and Community Impacts of Fire
Publication Type: Journal Article
Less fuel for the next fire? Short-interval fire delays forest recovery and interacting drivers amplify effects
Year: 2023
As 21st-century climate and disturbance dynamics depart from historic baselines, ecosystem resilience is uncertain. Multiple drivers are changing simultaneously, and interactions among drivers could amplify ecosystem vulnerability to change. Subalpine forests in Greater Yellowstone (Northern Rocky Mountains, USA) were historically resilient to infrequent (100–300 year), severe fire. We sampled paired short-interval (<30-year) and long-interval (>125-year) post-fire plots most recently burned between 1988 and 2018 to address two questions: (1) How do short-interval fire, climate,…
Publication Type: Journal Article