Research Database
Displaying 1 - 20 of 37
Trailing edge contractions common in interior western US trees under varying disturbances
Year: 2025
As climate warms, trees are expected to track their ideal climate, referred to as ‘range shifts’; however, lags in tree range shifts are currently common. Disturbance events that kill trees may help catalyse tree migrations by removing biotic competition, but can also limit regeneration by eliminating seed sources, and it is unknown whether disturbance will facilitate or inhibit tree migrations in the face of climate change. Here we use national forest inventory data to show that seedlings of 15 dominant tree species in the interior western United States occupy historically cooler areas than…
Publication Type: Journal Article
Fire Intensity and spRead forecAst (FIRA): A Machine Learning Based Fire Spread Prediction Model for Air Quality Forecasting Application
Year: 2025
Fire activities introduce hazardous impacts on the environment and public health by emitting various chemical species into the atmosphere. Most operational air quality forecast (AQF) models estimate smoke emissions based on the latest available satellite fire products, which may not represent real-time fire behaviors without considering fire spread. Hence, a novel machine learning (ML) based fire spread forecast model, the Fire Intensity and spRead forecAst (FIRA), is developed for AQF model applications. FIRA aims to improve the performance of AQF models by providing realistic, dynamic fire…
Publication Type: Journal Article
Bacterial Emission Factors: A Foundation for the Terrestrial-Atmospheric Modeling of Bacteria Aerosolized by Wildland Fires
Year: 2024
Wildland fire is a major global driver in the exchange of aerosols between terrestrial environments and the atmosphere. This exchange is commonly quantified using emission factors or the mass of a pollutant emitted per mass of fuel burned. However, emission factors for microbes aerosolized by fire have yet to be determined. Using bacterial cell concentrations collected on unmanned aircraft systems over forest fires in Utah, USA, we determine bacterial emission factors (BEFs) for the first time. We estimate that 1.39 × 1010 and 7.68 × 1011 microbes are emitted for each Mg of biomass consumed…
Publication Type: Journal Article
Abiotic Factors Modify Ponderosa Pine Regeneration Outcomes After High-Severity Fire
Year: 2024
Large high-severity burn patches are increasingly common in southwestern US dry conifer forests. Seed-obligate conifers often fail to quickly regenerate large patches because their seeds rarely travel the distances required to reach core patch area. Abiotic factors may further alter the distance seeds can travel to regenerate a patch, which would change expected post-fire regeneration patterns. We used the presence and density of ponderosa pine regeneration as a proxy for seed dispersal to quantify the effect of abiotic factors on seed dispersal into high-severity patches. We established 45…
Publication Type: Journal Article
Global rise in forest fire emissions linked to climate change in the extratropics
Year: 2024
Climate change increases fire-favorable weather in forests, but fire trends are also affected by multiple other controlling factors that are difficult to untangle. We use machine learning to systematically group forest ecoregions into 12 global forest pyromes, with each showing distinct sensitivities to climatic, human, and vegetation controls. This delineation revealed that rapidly increasing forest fire emissions in extratropical pyromes, linked to climate change, offset declining emissions in tropical pyromes during 2001 to 2023. Annual emissions tripled in one extratropical pyrome due to…
Publication Type: Journal Article
Repeated fuel treatments fall short of fire-adapted regeneration objectives in a Sierra Nevada mixed conifer forest, USA
Year: 2024
Fire exclusion over the last two centuries has driven a significant fire deficit in the forests of western North America, leading to widespread changes in the composition and structure of these historically fire-adapted ecosystems. Fuel treatments have been increasingly applied over the last few decades to mitigate fire hazard, yet it is unclear whether these fuel-focused treatments restore the fire-adapted conditions and species that will allow forests to persist into the future. A vital prerequisite of restoring fire-adaptedness is ongoing establishment of fire-tolerant tree species, and…
Publication Type: Journal Article
Application of the wildland fire emissions inventory system to estimate fire emissions on forest lands of the United States
Year: 2024
BackgroundForests are significant terrestrial biomes for carbon storage, and annual carbon accumulation of forest biomass contributes offsets affecting net greenhouse gases in the atmosphere. The immediate loss of stored carbon through fire on forest lands reduces the annual offsets provided by forests. As such, the United States reporting includes annual estimates of direct fire emissions in conjunction with the overall forest stock and change estimates as a part of national greenhouse gas inventories within the United Nations Framework Convention on Climate Change. Forest fire emissions…
Publication Type: Journal Article
Montane springs provide regeneration refugia after high-severity wildfire
Year: 2024
In the mountainous regions of the Western United States, increasing wildfire activity and climate change are putting forests at risk of regeneration failure and conversion to non-forests. During periods with unfavorable climatic conditions, locations that are suitable for post-fire tree regeneration (regeneration refugia) may be essential for forest recovery. These refugia could provide scattered islands of recovering forest from which broader forest recovery may be facilitated. Spring ecosystems provide cool and wet microsites relative to the surrounding landscape and may act as regeneration…
Publication Type: Journal Article
Thinning and prescribed burning increase shade-tolerant conifer regeneration in a fire excluded mixed-conifer forest
Year: 2024
Fire exclusion and past management have altered the composition, structure, and function of frequent-fire forests throughout western North America. In mixed-conifer forests of the California Sierra Nevada, fire exclusion has exacerbated the effects of drought and endemic bark beetles, resulting in extensive mortality of fire-adapted pine species. Thinning and prescribed fire are widely used in these forests to reduce fuels, moderate fire behavior, and restore ecosystems. Tree regeneration influences future forest composition and structure, and therefore future resilience to disturbances, but…
Publication Type: Journal Article
Generating fuel consumption maps on prescribed fire experiments from airborne laser scanning
Year: 2024
Background. Characterisation of fuel consumption provides critical insights into fire behaviour, effects, and emissions. Stand-replacing prescribed fire experiments in central Utah offered an opportunity to generate consumption estimates in coordination with other research efforts. Aims. We sought to generate fuel consumption maps using pre- and post-fire airborne laser scanning (ALS) and ground measurements and to test the spatial transferability of the ALSderived fuel models. Methods. Using random forest (RF), we empirically modelled fuel load and estimated consumption from pre-…
Publication Type: Journal Article
Fuel constraints, not fire weather conditions, limit fire behavior in reburned boreal forests
Year: 2024
Fire frequency in boreal forests has increased via longer burning seasons, drier conditions, and higher temperatures. However, fires have historically self-regulated via fuel limitations, mediating the effects of changes in climate and fire weather. Early post-fire boreal forests (10–15 years postfire) are often dominated by mixed conifer-broadleaf or broadleaf regeneration, considered less flammable due to the higher foliar moisture of broadleaf trees and shrubs compared to their more intact conifer counterparts. However, the strength of self-regulation in the context of changing fire…
Publication Type: Journal Article
Carbon emissions from the 2023 Canadian wildfires
Year: 2024
The 2023 Canadian forest fires have been extreme in scale and intensity with more than seven times the average annual area burned compared to the previous four decades. Here, we quantify the carbon emissions from these fires from May to September 2023 on the basis of inverse modelling of satellite carbon monoxide observations. We find that the magnitude of the carbon emissions is 647 TgC (570–727 TgC), comparable to the annual fossil fuel emissions of large nations, with only India, China and the USA releasing more carbon per year. We find that widespread hot–dry weather was a principal…
Publication Type: Journal Article
Snow-cover remote sensing of conifer tree recovery in high-severity burn patches
Year: 2024
The number of large, high-severity wildfires has been increasing across the western United States over the last several decades. It is not fully understood how changes in the frequency of large, severe wildfires may impact the resilience of conifer forests, due to alterations in regeneration success or failure. Our research investigates 30 years of conifer recovery patterns within 34 high-severity wildfire complexes (1988–1991) of the Northern Rocky Mountains. We evaluate the capability of snow-cover Landsat to characterize conifer tree recolonization of high-severity burn patches. Snow-…
Publication Type: Journal Article
Human driven climate change increased the likelihood of the 2023 record area burned in Canada
Year: 2024
In 2023, wildfires burned 15 million hectares in Canada, more than doubling the previous record. These wildfires caused a record number of evacuations, unprecedented air quality impacts across Canada and the northeastern United States, and substantial strain on fire management resources. Using climate models, we show that human-induced climate change significantly increased the likelihood of area burned at least as large as in 2023 across most of Canada, with more than two-fold increases in the east and southwest. The long fire season was more than five times as likely and the large areas…
Publication Type: Journal Article
Topographic information improves simulated patterns of post-fire conifer regeneration in the southwest United States
Year: 2023
The western United States is projected to experience more frequent and severe wildfires in the future due to drier and hotter climate conditions, exacerbating destructive wildfire impacts on forest ecosystems such as tree mortality and unsuccessful post-fire regeneration. While empirical studies have revealed strong relationships between topographical information and plant regeneration, ecological processes in ecosystem models have either not fully addressed topography-mediated effects on the probability of plant regeneration, or the probability is only controlled by climate-related factors,…
Publication Type: Journal Article
Less fuel for the next fire? Short-interval fire delays forest recovery and interacting drivers amplify effects
Year: 2023
As 21st-century climate and disturbance dynamics depart from historic baselines, ecosystem resilience is uncertain. Multiple drivers are changing simultaneously, and interactions among drivers could amplify ecosystem vulnerability to change. Subalpine forests in Greater Yellowstone (Northern Rocky Mountains, USA) were historically resilient to infrequent (100–300 year), severe fire. We sampled paired short-interval (<30-year) and long-interval (>125-year) post-fire plots most recently burned between 1988 and 2018 to address two questions: (1) How do short-interval fire, climate,…
Publication Type: Journal Article
Climate and fire impacts on tree recruitment in mixed conifer forests in Northwestern Mexico and California
Year: 2023
Frequent-fire forests were once heterogeneous at multiple spatial scales, which contributed to their resilience to severe fire. While many studies have characterized historical spatial patterns in frequent-fire forests, fewer studies have investigated their temporal dynamics. We investigated the influences of fire and climate on the timing of conifer recruitment in old-growth Jeffrey pine-mixed conifer forests in the Sierra San Pedro Martir (SSPM) and the eastern slope of Sierra Nevada. Additionally, we evaluated the impacts of fire exclusion and recent climate change on recruitment levels…
Publication Type: Journal Article
Patterns and drivers of early conifer regeneration following stand-replacing wildfire in Pacific Northwest (USA) temperate maritime forests
Year: 2023
Tree regeneration is a critical mechanism of forest resilience to stand-replacing wildfire (i.e., where fire results in >90 % tree mortality), and post-fire regeneration is a concern worldwide as the climate becomes warmer. Although post-fire tree regeneration has been relatively well-studied in fire-prone forests across western North America, it is less understood in fire regimes characterized by large patches of stand-replacing fire at long intervals, such as the nominally infrequent, high-severity fire regimes of the western Cascades of Washington and northern Oregon,…
Publication Type: Journal Article
Forecasting natural regeneration of sagebrush after wildfires using population models and spatial matching
Year: 2023
Context Addressing ecosystem degradation in the Anthropocene will require ecological restoration across large spatial extents. Identifying areas where natural regeneration will occur without direct resource investment will improve scalability of restoration actions. Objectives An ecoregion in need of large scale restoration is the Great Basin of the Western US, where increasingly large and frequent wildfires threaten ecosystem integrity and its foundational shrub species. We develop a framework to forecast where post-wildfire regeneration of sagebrush cover (Artemisia spp.) is likely to occur…
Publication Type: Journal Article
Ability of seedlings to survive heat and drought portends future demographic challenges for five southwestern US conifers
Year: 2023
Climate change and disturbance are altering forests and the rates and locations of tree regeneration. In semi-arid forests of the southwestern USA, limitations imposed by hot and dry conditions are likely to influence seedling survival. We examined how the survival of 1-year seedlings of five southwestern US conifer species whose southwestern distributions range from warmer and drier woodlands and forests (Pinus edulis Engelm., Pinus ponderosa Douglas ex C. Lawson) to cooler and wetter subalpine forests (Pseudotsuga menziesii (Mirb.) Franco, Abies concolor…
Publication Type: Journal Article