Research Database
Displaying 1 - 20 of 140
Prescribed fire, managed burning, and previous wildfires reduce the severity of a southwestern US gigafire
Year: 2025
In many parts of the western United States, wildfires are becoming larger and more severe, threatening the persistence of forest ecosystems. Understanding the ways in which management activities such as prescribed fire and managed wildfire can mitigate fire severity is essential for developing effective forest conservation strategies. We evaluated the effects of previous fuels reduction treatments, including prescribed fire and wildfire managed for resource benefit, and other wildfires on the burn severity of the 2022 Black Fire in southwestern New Mexico, USA. The Black Fire burned over 131,…
Publication Type: Journal Article
Prescribed fire, managed burning, and previous wildfires reduce the severity of a southwestern US gigafire
Year: 2025
In many parts of the western United States, wildfires are becoming larger and more severe, threatening the persistence of forest ecosystems. Understanding the ways in which management activities such as prescribed fire and managed wildfire can mitigate fire severity is essential for developing effective forest conservation strategies. We evaluated the effects of previous fuels reduction treatments, including prescribed fire and wildfire managed for resource benefit, and other wildfires on the burn severity of the 2022 Black Fire in southwestern New Mexico, USA. The Black Fire burned over 131,…
Publication Type: Journal Article
A fire deficit persists across diverse North American forests despite recent increases in area burned
Year: 2025
Rapid increases in wildfire area burned across North American forests pose novel challenges for managers and society. Increasing area burned raises questions about whether, and to what degree, contemporary fire regimes (1984–2022) are still departed from historical fire regimes (pre-1880). We use the North American tree-ring fire-scar network (NAFSN), a multi-century record comprising >1800 fire-scar sites spanning diverse forest types, and contemporary fire perimeters to ask whether there is a contemporary fire surplus or fire deficit, and whether recent fire years are unprecedented…
Publication Type: Journal Article
Evidence for strong bottom-up controls on fire severity during extreme events
Year: 2025
BackgroundRecord fire years in recent decades have challenged post-fire forest recovery in the western United States and beyond. To improve management responses, it is critical that we understand the conditions under which management can mitigate severe wildfire impacts, and when it cannot. Here, we evaluated the influence of top-down and bottom-up fire severity forcings on 17 wildfires occurring during two consecutive record-setting years in the eastern Cascade Mountains of Washington State. Despite much of the area having been burned after an extended period of fire…
Fire Effects and Fire Ecology, Fire History, Fuels and Fuel Treatments, Restoration and Hazardous Fuel Reduction
Publication Type: Journal Article
Fire Intensity and spRead forecAst (FIRA): A Machine Learning Based Fire Spread Prediction Model for Air Quality Forecasting Application
Year: 2025
Fire activities introduce hazardous impacts on the environment and public health by emitting various chemical species into the atmosphere. Most operational air quality forecast (AQF) models estimate smoke emissions based on the latest available satellite fire products, which may not represent real-time fire behaviors without considering fire spread. Hence, a novel machine learning (ML) based fire spread forecast model, the Fire Intensity and spRead forecAst (FIRA), is developed for AQF model applications. FIRA aims to improve the performance of AQF models by providing realistic, dynamic fire…
Publication Type: Journal Article
Methods to assess fire-induced tree mortality: review of fire behaviour proxy and real fire experiments
Year: 2025
Background: The increased interest in why and how trees die from fire has led to several syntheses of the potential mechanisms of fire-induced tree mortality. However, these generally neglect to consider experimental methods used to simulate fire behaviour conditions.Aims: To describe, evaluate the appropriateness of and provide a historical timeline of the different approaches that have been used to simulate fire behaviour in fire-induced tree mortality studies.Methods: We conducted a historical review of the different actual and fire proxy methods that have been used to…
Publication Type: Journal Article
Comparing modeled soil temperature and moisture dynamics during prescribed fires, slash-pile burns and wildfires
Year: 2025
Background: Wildfires, prescribed fires and slash-pile burns are disturbances that occur in many terrestrial ecosystems. Such fires produce variable surface heat fluxes causing a spectrum of effects on soil, such as seed mortality, nutrient loss, changes in microbial activity and water repellency. Accurately modeling soil heating is vital to predicting these second-order fire effects. The process-based Massman HMV (Heat–Moisture–Vapor) model incorporates soil water evaporation, heat transport and water vapor movement, and captures the observed rapid evaporation of soil moisture. Aims:…
Publication Type: Journal Article
Canadian forests are more conducive to high-severity fires in recent decades
Year: 2025
Canada has experienced more-intense and longer fire seasons with more-frequent uncontrollable wildfires over the past decades. However, the effect of these changes remains unknown. This study identifies driving forces of burn severity and estimates its spatiotemporal variations in Canadian forests. Our results show that fuel aridity was the most influential driver of burn severity, summer months were more prone to severe burning, and the northern areas were most influenced by the changing climate. About 6% (0.54 to 14.64%) of the modeled areas show significant increases in the number of days…
Publication Type: Journal Article
Extreme Fire Spread Events Burn More Severely and Homogenize Postfire Landscapes in the Southwestern United States
Year: 2025
Extreme fire spread events rapidly burn large areas with disproportionate impacts on people and ecosystems. Such events are associated with warmer and drier fire seasons and are expected to increase in the future. Our understanding of the landscape outcomes of extreme events is limited, particularly regarding whether they burn more severely or produce spatial patterns less conducive to ecosystem recovery. To assess relationships between fire spread rates and landscape burn severity patterns, we used satellite fire detections to create day‐of‐burning maps for 623 fires comprising 4267 single‐…
Publication Type: Journal Article
Model analysis of post-fire management and potential reburn fire behavior
Year: 2024
Recent trends in wildfire area burned have been characterized by large patches with high densities of standing dead trees, well outside of historical range of variability in many areas and presenting forest managers with difficult decisions regarding post-fire management. Post-fire tree harvesting, commonly called salvage logging, is a controversial management tactic that is often undertaken to recoup economic loss and, more recently, also to reduce future fuel hazard, especially when coupled with surface fuel reduction. It is unclear, however, whether the reductions in future fuels translate…
Publication Type: Journal Article
Fire intensity effects on serotinous seed survival
Year: 2024
BackgroundIn fire-prone environments, some species store their seeds in canopy cones (serotiny), which provides seeds protection from the passage of fire before stimulating seed release. However, the capacity of serotinous cones to protect seeds under high intensity fire is uncertain. Beyond simply “high” versus “low” fire intensity or severity, we must understand the influence of the specific characteristics of fire intensity—heat flux, exposure duration, and their dynamics—on serotinous seed survival. In this study, we tested serotinous seed survival under transient levels of…
Publication Type: Journal Article
Application of the wildland fire emissions inventory system to estimate fire emissions on forest lands of the United States
Year: 2024
BackgroundForests are significant terrestrial biomes for carbon storage, and annual carbon accumulation of forest biomass contributes offsets affecting net greenhouse gases in the atmosphere. The immediate loss of stored carbon through fire on forest lands reduces the annual offsets provided by forests. As such, the United States reporting includes annual estimates of direct fire emissions in conjunction with the overall forest stock and change estimates as a part of national greenhouse gas inventories within the United Nations Framework Convention on Climate Change. Forest fire emissions…
Publication Type: Journal Article
Ladder fuels rather than canopy volumes consistently predict wildfire severity even in extreme topographic-weather conditions
Year: 2024
Drivers of forest wildfire severity include fuels, topography and weather. However, because only fuels can be actively managed, quantifying their effects on severity has become an urgent research priority. Here we employed GEDI spaceborne lidar to consistently assess how pre-fire forest fuel structure affected wildfire severity across 42 California wildfires between 2019–2021. Using a spatial-hierarchical modeling framework, we found a positive concave-down relationship between GEDI-derived fuel structure and wildfire severity, marked by increasing severity with greater fuel loads until a…
Publication Type: Journal Article
Patterns, drivers, and implications of postfire delayed tree mortality in temperate conifer forests of the western United States
Year: 2024
Conifer forest resilience may be threatened by increasing wildfire activity and compound disturbances in western North America. Fire refugia enhance forest resilience, yet may decline over time due to delayed mortality—a process that remains poorly understood at landscape and regional scales. To address this uncertainty, we used high-resolution satellite imagery (5-m pixel) to map and quantify delayed mortality of conifer tree cover between 1 and 5 years postfire, across 30 large wildfires that burned within three montane ecoregions in the western United States. We used statistical models to…
Publication Type: Journal Article
Stream chemical response is mediated by hydrologic connectivity and fire severity in a Pacific Northwest forest
Year: 2024
Large-scale wildfires are becoming increasingly common in the wet forests of the Pacific Northwest (USA), with predicted increases in fire prevalence under future climate scenarios. Wildfires can alter streamflow response to precipitation and mobilize water quality constituents, which pose a risk to aquatic ecosystems and downstream drinking water treatment. Research often focuses on the impacts of high-severity wildfires, with stream biogeochemical responses to low- and mixed-severity fires often understudied, particularly during seasonal shifts in hydrologic connectivity between hillslopes…
Publication Type: Journal Article
Moderating effects of past wildfire on reburn severity depend on climate and initial severity in Western US forests
Year: 2024
Rising global fire activity is increasing the prevalence of repeated short-interval burning (reburning) in forests worldwide. In forests that historically experienced frequent-fire regimes, high-severity fire exacerbates the severity of subsequent fires by increasing prevalence of shrubs and/or by creating drier understory conditions. Low- to moderate-severity fire, in contrast, can moderate future fire behavior by reducing fuel loads. The extent to which previous fires moderate future fire severity will powerfully affect fire-prone forest ecosystem trajectories over the next century. Further…
Publication Type: Journal Article
Generating fuel consumption maps on prescribed fire experiments from airborne laser scanning
Year: 2024
Background. Characterisation of fuel consumption provides critical insights into fire behaviour, effects, and emissions. Stand-replacing prescribed fire experiments in central Utah offered an opportunity to generate consumption estimates in coordination with other research efforts. Aims. We sought to generate fuel consumption maps using pre- and post-fire airborne laser scanning (ALS) and ground measurements and to test the spatial transferability of the ALSderived fuel models. Methods. Using random forest (RF), we empirically modelled fuel load and estimated consumption from pre-…
Publication Type: Journal Article
Molecular shifts in dissolved organic matter along a burn severity continuum for common land cover types in the Pacific Northwest, USA
Year: 2024
Increasing wildfire severity is of growing concern in the western United States, with consequences for the production, composition, and mobilization of dissolved organic matter (DOM) from terrestrial to aquatic systems. Our current understanding of wildfire impacted DOM (often termed pyrogenic DOM) composition is largely built from temperature-based studies that can be difficult to extrapolate to field conditions, which are often defined by ‘burn severity’, or the post-wildfire impact observed at a site. Thus, burn severity can encapsulate a broader range of fire and environmental conditions…
Publication Type: Journal Article
Tamm review: A meta-analysis of thinning, prescribed fire, and wildfire effects on subsequent wildfire severity in conifer dominated forests of the Western US
Year: 2024
Increased understanding of how mechanical thinning, prescribed burning, and wildfire affect subsequent wildfire severity is urgently needed as people and forests face a growing wildfire crisis. In response, we reviewed scientific literature for the US West and completed a meta-analysis that answered three questions: (1) How much do treatments reduce wildfire severity within treated areas? (2) How do the effects vary with treatment type, treatment age, and forest type? (3) How does fire weather moderate the effects of treatments? We found overwhelming evidence that mechanical thinning with…
Publication Type: Journal Article
Montane springs provide regeneration refugia after high-severity wildfire
Year: 2024
In the mountainous regions of the Western United States, increasing wildfire activity and climate change are putting forests at risk of regeneration failure and conversion to non-forests. During periods with unfavorable climatic conditions, locations that are suitable for post-fire tree regeneration (regeneration refugia) may be essential for forest recovery. These refugia could provide scattered islands of recovering forest from which broader forest recovery may be facilitated. Spring ecosystems provide cool and wet microsites relative to the surrounding landscape and may act as regeneration…
Publication Type: Journal Article