Research Database
Displaying 21 - 40 of 47
Rapid Growth of Large Forest Fires Drives the Exponential Response of Annual Forest-Fire Area to Aridity in the Western United States
Year: 2022
Annual forest area burned (AFAB) in the western United States (US) has increased as a positive exponential function of rising aridity in recent decades. This non-linear response has important implications for AFAB in a changing climate, yet the cause of the exponential AFAB-aridity relationship has not been given rigorous attention. We investigated the exponential AFAB-aridity relationship in western US forests using a new 1984–2019 database of fire events and 2001–2020 satellite-based records of daily fire growth. While forest-fire frequency and duration grow linearly with aridity, the…
Publication Type: Journal Article
Tree mortality response to drought-density interactions suggests opportunities to enhance drought resistance
Year: 2022
1. The future of dry forests around the world is uncertain given predictions that rising temperatures and enhanced aridity will increase drought-induced tree mortality. Using forest management and ecological restoration to reduce density and competition for water offers one of the few pathways that forests managers can potentially minimize drought-induced tree mortality. Competition for water during drought leads to elevated tree mortality in dense stands, although the influence of density on heat-induced stress and the durations of hot or dry conditions that most impact mortality remain…
Publication Type: Journal Article
Future climate risks from stress, insects and fire across US forests
Year: 2022
Forests are currently a substantial carbon sink globally. Many climate change mitigation strategies leverage forest preservation and expansion, but rely on forests storing carbon for decades to centuries. Yet climate-driven disturbances pose critical risks to the long-term stability of forest carbon. We quantify the climate drivers that influence wildfire and climate stress-driven tree mortality, including a separate insect-driven tree mortality, for the contiguous United States for current (1984–2018) and project these future disturbance risks over the 21st century. We find that current…
Publication Type: Journal Article
Fire and Forests in the 21st Century: Managing Resilience Under Changing Climates and Fire Regimes in USA Forests
Year: 2021
Higher temperatures, lower snowpacks, drought, and extended dry periods have contributed to increased wildfire activity in recent decades. Climate change is expected to increase the frequency of large fires, the cumulative area burned, andfire suppression costs and risks in many areas of the USA. Fire regimes are likely to change due to interactions among climate, fire, and other stressors and disturbances; resulting in persistent changes in forest structure and function. The remainder of the twenty-first century will present substantial challenges, as natural resource managers are faced with…
Publication Type: Book Chapter
Post-fire Salvage Logging Science Series
Year: 2021
The publications and media in this hot topic address the effects of salvage logging on plants, biodiversity, and cavity-nesting birds. They also cover a range of research that includes, but is not limited to, the ecological impacts of salvage logging; the effects of salvage logging on soil, sediment production, mountain pine beetles, and riparian systems.
Publication Type: Presentation
Crowded and Thirsty: Fire exclusion leads to greater drought sensitivity in mixed-conifer forests
Year: 2020
Wildfires were a frequent source of disturbance in forests of the Western United States prior to Euro-American settlement. Following a series of catastrophic wildfires in the Northern Rockies in 1910, the U.S. Forest Service adopted a broad wildfire suppression policy that has resulted in forests thick with small trees. These crowded trees compete for nutrients and water and experience increased drought stress in summer.In recent decades, many trees have died following drought, bark beetle outbreaks, and severe wildfire. A link between this mortality and increasing susceptibility to drought…
Publication Type: Report
Riparian and adjacent upland forests burned synchronously during dry years in eastern Oregon (1650-1900 CE), USA
Year: 2020
Riparian forests link terrestrial and freshwater communities and therefore understanding the landscape context of fire regimes in these forests is critical to fully understanding the landscape ecology. However, few direct studies of fire regimes exist for riparian forests, especially in the landscape context of adjacent upland forests or studies of long-term climate drivers of riparian forest fires. We reconstructed a low-severity fire history from tree rings in 38 1-ha riparian plots and combined them with existing fire histories from 104 adjacent upland plots to yield 2633 fire scars…
Publication Type: Journal Article
Tamm Review: Reforestation for resilience in dry western U.S. forests
Year: 2019
The increasing frequency and severity of fire and drought events have negatively impacted the capacity and success of reforestation efforts in many dry, western U.S. forests. Challenges to reforestation include the cost and safety concerns of replanting large areas of standing dead trees, and high seedling and sapling mortality rates due to water stress, competing vegetation, and repeat fires that burn young plantations. Standard reforestation practices have emphasized establishing dense conifer cover with gridded planting, sometimes called 'pines in lines', followed by shrub control and pre-…
Publication Type: Journal Article
Fire deficits have increased drought‐sensitivity in dry conifer forests; fire frequency and tree‐ring carbon isotope evidence from Central Oregon
Year: 2019
A century of fire suppression across the Western US has led to more crowded forests and increased competition for resources. Studies of forest thinning or stand conditions after mortality events have provided indirect evidence for how competition can promote drought stress and predispose forests to severe fire and/or bark beetle outbreaks. Here we demonstrate linkages between fire deficits and increasing drought stress through analyses of annually resolved tree‐ring growth, fire scars, and carbon isotope discrimination (Δ13C) across a dry mixed‐conifer forest landscape. Fire deficits across…
Publication Type: Journal Article
Mixed-severity wildfire and habitat of an old-forest obligate
Year: 2019
The frequency, extent, and severity of wildfire strongly influence the structure and function of ecosystems. Mixed‐severity fire regimes are the most complex and least understood fire regimes, and variability of fire severity can occur at fine spatial and temporal scales, depending on previous disturbance history, topography, fuel continuity, vegetation type, and weather. During high fire weather in 2013, a complex of mixed‐severity wildfires burned across multiple ownerships within the Klamath‐Siskiyou ecoregion of southwestern Oregon where northern spotted owl (Strix occidentalis caurina)…
Publication Type: Journal Article
It takes a few to tango: changing climate and fire regimes can cause regeneration failure of two subalpine conifers
Year: 2018
Environmental change is accelerating in the 21st century, but how multiple drivers may interact to alter forest resilience remains uncertain. In forests affected by large high-severity disturbances, tree regeneration is a resilience linchpin that shapes successional trajectories for decades. We modeled stands of two widespread western U.S. conifers, Douglas-fir (Pseudotsuga menziesii var. glauca), and lodgepole pine (Pinus contorta var. latifolia), in Yellowstone National Park (Wyoming, USA) to ask (1) What combinations of distance to seed source, fire return interval, and warming-drying…
Publication Type: Journal Article
Synthesis of science to inform land management within the Northwest Forest Plan area: executive summary
Year: 2018
This is the executive summary of a three-volume science synthesis that addresses various ecological and social concerns regarding management of federal forests encompassed by the Northwest Forest Plan (NWFP). Land managers with the U.S. Forest Service provided questions that helped guide preparation of the synthesis. It builds on the 10-, 15-, and 20-year NWFP monitoring reports and synthesizes the vast body of relevant scientific literature that has accumulated in the 24 years since the NWFP was initiated. Here we summarize scientific findings and considerations for management that were…
Climate Change and Fire, Communicating about Fire, Fish and Wildlife Habitat, Restoration and Hazardous Fuel Reduction
Publication Type: Report
Cover of tall trees best predicts California spotted owl habitat
Year: 2017
Restoration of western dry forests in the USA often focuses on reducing fuel loads. In the range of the spotted owl, these treatments may reduce canopy cover and tree density, which could reduce preferred habitat conditions for the owl and other sensitive species. In particular, high canopy cover (≥70%) has been widely reported to be an important feature of spotted owl habitat, but averages of stand-level forest cover do not provide important information on foliage height and gap structure. To provide better quantification of canopy structure, we used airborne LiDAR imagery to identify canopy…
Publication Type: Journal Article
Effects of Drought on Forests and Rangelands in the United States: A Comprehensive Science Synthesis
Year: 2016
This assessment provides input to the reauthorized National Integrated Drought Information System (NIDIS) and the National Climate Assessment (NCA), and it establishes the scientific foundation needed to manage for drought resilience and adaptation. Focal areas include drought characterization; drought impacts on forest processes and disturbances such as insect outbreaks and wildfire; and consequences for forest and rangeland values. Drought can be a severe natural disaster with substantial social and economic consequences. Drought becomes most obvious when large-scale changes are observed;…
Publication Type: Report
Does prescribed fire promote resistance to drought in low elevation forests of the Sierra Nevada, California, USA?
Year: 2016
Prescribed fire is a primary tool used to restore western forests following more than a century of fire exclusion, reducing fire hazard by removing dead and live fuels (small trees and shrubs). It is commonly assumed that the reduced forest density following prescribed fire also reduces competition for resources among the remaining trees, so that the remaining trees are more resistant (more likely to survive) in the face of additional stressors, such as drought. Yet this proposition remains largely untested, so that managers do not have the basic information to evaluate whether prescribed…
Publication Type: Journal Article
Wildfire, climate, and perceptions in Northeast Oregon
Year: 2016
Wildfire poses a rising threat in the western USA, fueled by synergies between historical fire suppression, changing land use, insects and disease, and shifts toward a drier, warmer climate. The rugged landscapes of northeast Oregon, with their historically forest- and resource-based economies, have been one of the areas affected. A 2011 survey found area residents highly concerned about fire and insect threats, but not about climate change. In 2014 we conducted a second survey that, to explore this apparent disconnect, included questions about past and future summertime (fire season)…
Publication Type: Journal Article
Review of broad-scale drought monitoring of forests: Toward an integrated data mining approach
Year: 2016
Efforts to monitor the broad-scale impacts of drought on forests often come up short. Drought is a direct stressor of forests as well as a driver of secondary disturbance agents, making a full accounting of drought impacts challenging. General impacts can be inferred from moisture deficits quantified using precipitation and temperature measurements. However, derived meteorological indices may not meaningfully capture drought impacts because drought responses can differ substantially among species, sites and regions. Meteorology-based approaches also require the characterization of current…
Publication Type: Journal Article
Models predict longer, deeper U.S. droughts
Year: 2015
Severe, decades-long "megadroughts" that hit the southwestern and midwestern United States over the past millennium may be just a preview of droughts to come in the next century as a result of climate change, new research suggests. According to a new analysis of 17 state-of-the-art climate models and reconstructions of historical drought based on 1000 years of tree-ring data, the regions are heading into a period of unprecedented dryness even if CO2 emissions are dramatically reduced. Under a "business-as-usual" emission scenario, there's an 80% likelihood that at least one decades-long…
Publication Type: Journal Article
Historical northern spotted owl habitat and old-growth dry forests maintained by mixed-severity wildfires
Year: 2015
Context: Reconstructing historical habitat could help reverse declining animal populations, but detailed, spatially comprehensive data are rare. For example, habitat for the federally threatened Northern spotted owl (NSO; Strix occidentalis caurina) was thought historically rare because low-severity fires kept forests open and habitat restricted to fire refugia, but spatial historical data are lacking. Objectives: Here I use public land-surveys to spatially reconstruct NSO habitat and old-growth forests in dry forests in Oregon's Eastern Cascades in the late-1800s. I used reconstructions of…
Publication Type: Journal Article