Research Database
Displaying 1 - 15 of 15
Key Findings and Messages from the Go Big or Go Home? Project
Year: 2018
About Go Big or Go Home?: The goals of this research project were to analyze how public land managers and stakeholders in Oregon’s east Cascades can plan and manage at landscape scales using scientific research and participatory simulation modeling (Envision). To learn more, visit: gbgh.forestry.oregonstate.edu
Publication Type: Report
Fire and tree death: understanding and improving modeling of fire-induced tree mortality
Year: 2018
Each year wildland fires kill and injure trees on millions of forested hectares globally, affecting plant and animal biodiversity, carbon storage, hydrologic processes, and ecosystem services. The underlying mechanisms of fire-caused tree mortality remain poorly understood, however, limiting the ability to accurately predict mortality and develop robust modeling applications, especially under novel future climates. Virtually all post-fire tree mortality prediction systems are based on the same underlying empirical model described in Ryan and Reinhardt (1988 Can. J. For. Res. 18 1291–7), which…
Publication Type: Journal Article
Forest Service Managers' Perception of Landscapes and Computer Models
Year: 2018
About Go Big or Go Home?: The goals of this research project were to analyze how public land managers and stakeholders in Oregon’s east Cascades can plan and manage at landscape scales using scientific research and participatory simulation modeling (Envision). To learn more, visit: gbgh.forestry.oregonstate.edu
Publication Type: Report
Advancing the Science of Wildland Fire Dynamics Using Process-Based Models
Year: 2018
As scientists and managers seek to understand fire behavior in conditions that extend beyond the limits of our current empirical models and prior experiences, they will need new tools that foster a more mechanistic understanding of the processes driving fire dynamics and effects. Here we suggest that process-based models are powerful research tools that are useful for investigating a large number of emerging questions in wildland fire sciences. These models can play a particularly important role in advancing our understanding, in part, because they allow their users to evaluate the potential…
Publication Type: Journal Article
Landscapes 101: Understanding Landscape Approaches to Forest Restoration and Management
Year: 2018
About Go Big or Go Home?: The goals of this research project were to analyze how public land managers and stakeholders in Oregon’s east Cascades can plan and manage at landscape scales using scientific research and participatory simulation modeling (Envision). To learn more, visit: gbgh.forestry.oregonstate.edu
Publication Type: Report
The Weather Conditions for Desired Smoke Plumes at a FASMEE Burn Site
Year: 2018
Weather is an important factor that determines smoke development, which is essential information for planning smoke field measurements. This study identifies the synoptic systems that would favor to produce the desired smoke plumes for the Fire and Smoke Model Evaluation Experiment (FASMEE). Daysmoke and PB-Piedmont (PB-P) models are used to simulate smoke plume evolution during the day time and smoke drainage and fog formation during the nighttime for hypothetical prescribed burns on 5–8 February 2011 at the Stewart Army Base in the southeastern United States. Daysmoke simulation is…
Publication Type: Journal Article
Science and Collaborative Processes
Year: 2018
About Go Big or Go Home?: The goals of this research project were to analyze how public land managers and stakeholders in Oregon’s east Cascades can plan and manage at landscape scales using scientific research and participatory simulation modeling (Envision). To learn more, visit: gbgh.forestry.oregonstate.edu
Publication Type: Report
Tree traits influence response to fire severity in the western Oregon Cascades, USA
Year: 2018
Wildfire is an important disturbance process in western North American conifer forests. To better understand forest response to fire, we used generalized additive models to analyze tree mortality and long-term (1 to 25 years post-fire) radial growth patterns of trees that survived fire across a burn severity gradient in the western Cascades of Oregon. We also used species-specific leaf-area models derived from sapwood estimates to investigate the linkage between photosynthetic capacity and growth response. Larger trees and shade intolerant trees had a higher probability of surviving fire.…
Publication Type: Journal Article
Assessing potential climate change effects on vegetation using a linked model approach
Year: 2013
We developed a process that links the mechanistic power of dynamic global vegetation models with the detailed vegetation dynamics of state-and-transition models to project local vegetation shifts driven by projected climate change. We applied our approach to central Oregon (USA) ecosystems using three climate change scenarios to assess potential future changes in species composition and community structure. Our results suggest that: (1) legacy effects incorporated in state-and-transition models realistically dampen climate change effects on vegetation; (2) species-specific response to fire…
Publication Type: Journal Article
Current status and future needs of the BehavePlus fire modeling system
Year: 2013
The BehavePlus Fire Modeling System is among the most widely used systems for wildland fire prediction. It is designed for use in a range of tasks including wildfire behaviour prediction, prescribed fire planning, fire investigation, fuel hazard assessment, fire model understanding, communication and research. BehavePlus is based on mathematical models for fire behaviour, fire effects and fire environment. It is a point system for which conditions are constant for each calculation, but is designed to encourage examination of the effect of a range of conditions through tables and graphs.…
Publication Type: Journal Article
Optimising fuel treatments over time and space
Year: 2013
Fuel treatments have been widely used as a tool to reduce catastrophic wildland fire risks in many forests around the world. However, it is a challenging task for forest managers to prioritise where, when and how to implement fuel treatments across a large forest landscape. In this study, an optimisation model was developed for long-term fuel management decisions at a landscape scale. Using a simulated annealing algorithm, the model optimises locations and timing of fuel treatments, while considering changes in forest dynamics over time, fire behaviour and spread, values at risk, and…
Publication Type: Journal Article
ArcFuels10 System Overview
Year: 2013
Fire behavior modeling and geospatial analyses can provide tremendous insight for land managers as they grapple with the complex problems frequently encountered in wildfire risk assessments and fire and fuels management planning. Fuel management often is a particularly complicated process in which the benefits and potential impacts of fuel treatments need to be demonstrated in the context of land management goals and public expectations. The fuel treatment planning process is complicated by the lack of data assimilation among fire behavior models and weak linkages to geographic information…
Publication Type: Report
Examination of the wind speed limit function in the Rothermel surface fire spread model
Year: 2013
The Rothermel surface fire spread model includes a wind speed limit, above which predicted rate of spread is constant. Complete derivation of the wind limit as a function of reaction intensity is given, along with an alternate result based on a changed assumption. Evidence indicates that both the original and the revised wind limits are too restrictive. Wind limit is based in part on data collected on the 7 February 1967 Tasmanian grassland fires. A reanalysis of the data indicates that these fires might not have been spreading in fully cured continuous grasslands, as assumed. In addition,…
Publication Type: Journal Article
Modelling conditional burn probability patterns for large wildland fires
Year: 2013
We present a technique for modelling conditional burn probability patterns in two dimensions for large wildland fires. The intended use for the model is strategic program planning when information about future fire weather and event durations is unavailable and estimates of the average probabilistic shape and extent of large fires on a landscape are needed. To model average conditional burn probability patterns, we organised historical fire data from Yellowstone National Park, USA, into a set of grids; one grid per fire. We captured various spatial relationships inherent in the gridded data…
Publication Type: Journal Article
Assessing forest vegetation and fire simulation model performance after the Cold Springs wildfire, Washington, USA
Year: 2013
Given that resource managers rely on computer simulation models when it is difficult or expensive to obtain vital information directly, it is important to evaluate how well a particular model satisfies applications for which it is designed. The Forest Vegetation Simulator (FVS) is used widely for forest management in the US, and its scope and complexity continue to increase. This paper focuses on the accuracy of estimates made by the Fire and Fuels Extension (FFE-FVS) predictions through comparisons between model outputs and measured post-fire conditions for the Cold Springs wildfire and on…
Publication Type: Journal Article