Research Database
Displaying 181 - 200 of 264
Wildfire risk associated with different vegetation types within and outside wildland-urban interfaces
Year: 2016
Wildland-urban interfaces (WUIs) are areas where urban settlements and wildland vegetation intermingle, making the interaction between human activities and wildlife especially intense. Their relevance is increasing worldwide as they are expanding and are associated with fire risk. The WUI may affect the fire risk associated with the type of vegetation (land cover/land use; LULC), a well-known risk factor, due to differences in the type and intensity of human activities in different LULCs within and outside WUIs. No previous studies analyse this interaction between the effects of the WUI and…
Publication Type: Journal Article
Projected major fire and vegetation changes in the Pacific Northwest of the conterminous United States under selected CMIP5 climate futures
Year: 2015
Climate change adaptation and mitigation require understanding of vegetation response to climate change. Using the MC2 dynamic global vegetation model (DGVM) we simulate vegetation for the Northwest United States using results from 20 different Climate Model Intercomparison Project Phase 5 (CMIP5) models downscaled using the MACA algorithm. Results were generated for representative concentration pathways (RCPs) 4.5 and 8.5 under vegetation modeling scenarios with and without fire suppression for a total of 80 model runs for future projections. For analysis, results were aggregated by three…
Publication Type: Journal Article
Wildland fire deficit and surplus in the western United States, 1984-2012
Year: 2015
Wildland fire is an important disturbance agent in the western US and globally. However, the natural role of fire has been disrupted in many regions due to the influence of human activities, which have the potential to either exclude or promote fire, resulting in a "fire deficit" or "fire surplus", respectively. In this study, we developed a model of expected area burned for the western US as a function of climate from 1984 to 2012. We then quantified departures from expected area burned to identify geographic regions with fire deficit or surplus. We developed our model of area burned as a…
Publication Type: Journal Article
A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models
Year: 2015
Accurate biomass measurements and analyses are critical components in quantifying carbon stocks and sequestration rates, assessing potential impacts due to climate change, locating bio-energy processing plants, and mapping and planning fuel treatments. To this end, biomass equations will remain a key component of future carbon measurements and estimation. As researchers in biomass and carbon estimation, we review the present scenario of aboveground biomass estimation, focusing particularly on estimation using tree-level models and identify some cautionary points that we believe will improve…
Publication Type: Journal Article
Representing climate, disturbance, and vegetation interactions in landscape models
Year: 2015
The prospect of rapidly changing climates over the next century calls for methods to predict their effects on myriad, interactive ecosystem processes. Spatially explicit models that simulate ecosystem dynamics at fine (plant, stand) to coarse (regional, global) scales are indispensable tools for meeting this challenge under a variety of possible futures. A special class of these models, called landscape models (LMs), simulates dynamics at intermediate scales where many critical ecosystem processes interact. The complicated dependencies among climate, disturbance, and vegetation present a…
Publication Type: Journal Article
Developing a post-processor to link the Forest Vegetation Simulator (FVS) and the Fuel Characteristic Classification System (FCCS)
Year: 2015
In this project, we developed a Forest Vegetation Simulator (FVS, JFSP Project #) post-processor (FVS2FCCS) to convert FVS simulated treelist and surface fuel data into Fuel Characteristics Classification System (FCCS, JFSP Project #98-1-1-06) fuelbed format (.xml) that can be read and processed by the FCCS to create estimates of surface fire behavior, including reaction intensity (Btu ft-2 min-1 or kJ m2), rate-of-spread (ft min-1 or m min-1), and flame length (ft or m). Post-processors are programs that extend FVS modeling, reporting, and display capabilities. Our post-processor allows…
Publication Type: Report
Modeling wildfire regimes in forest landscapes: abstracting a complex reality
Year: 2015
Fire is a natural disturbance that is nearly ubiquitous in terrestrial ecosystems. The capacity to burn exists virtually wherever vegetation grows. In some forested landscapes, fire is a principal driver of rapid ecosystem change, resetting succession ( McKenzie et al. 1996a ) and changing wildlife habitat (Cushman et al. 2011 ), hydrology ( Feikema et al. 2013 ), element cycles ( Smithwick 2011 ), and even landforms (Pierce et al. 2004 ). In boreal forests, for example, recurring wildfi res are the main cause of compositional and spatial patterns ( Wein and MacLean 1983 ), where a fi re-…
Publication Type: Book Chapter
Development and application of a probabilistic method for wildfire suppression cost modeling
Year: 2015
Wildfire activity and escalating suppression costs continue to threaten the financial health of federal land management agencies. In order to minimize and effectively manage the cost of financial risk, agencies need the ability to quantify that risk. A fundamental aim of this research effort, therefore, is to develop a process for generating risk-based metrics for annual suppression costs. Our modeling process borrows from actuarial science and the process of assigning insurance premiums based on distributions for the frequency and magnitude of claims, generating parameterized probability…
Publication Type: Journal Article
The cost of climate change: Ecosystem services and wildland fires
Year: 2015
Little research has focused on the economic impact associated with climate-change induced wildland fire on natural ecosystems and the goods and services they provide. We examine changes in wildland fire patterns based on the U.S. Forest Service's MC1 dynamic global vegetation model from 2013 to 2115 under two pre-defined scenarios: a reference (i.e., business-as-usual) and a greenhouse gas mitigation policy scenario. We construct a habitat equivalency model under which fuels management activities, actions commonly undertaken to reduce the frequency and/or severity of wildland fire, are used…
Publication Type: Journal Article
Enhancing adaptive capacity for restoring fire-dependent ecosystems: the Fire Learning Network’s Prescribed Fire Training Exchanges
Year: 2015
Prescribed fire is a critical tool for promoting restoration and increasing resilience in fire-adapted ecosystems, but there are barriers to its use, including a shortage of personnel with adequate ecological knowledge and operational expertise to implement prescribed fire across multijurisdictional landscapes. In the United States, recognized needs for both professional development and increased use of fire are not being met, often because of institutional limitations. The Fire Learning Network has been characterized as a multiscalar, collaborative network that works to enhance the adaptive…
Publication Type: Journal Article
Restoration impacts on fuels and fire potential in a dryland tropical ecosystem dominated by the invasive grass Megathyrsus maximus
Year: 2015
Ecological restoration often attempts to promote native species while managing for disturbances such as fire and non-native invasions. The goal of this research was to investigate whether restoration of a non-native, invasive Megathyrsus maximus (guinea grass) tropical grassland could simultaneously promote native species and reduce fire potential. Megathyrsus maximus was suppressed with herbicide, and three suites of native species—each including the same groundcover and shrub, and one of three tree species—were outplanted in a randomized, complete block design that also included herbicide…
Publication Type: Journal Article
Modeling the direct effect of salvage logging on long-term temporal fuel dynamics in dry-mixed conifer forests
Year: 2015
Salvage logging has been proposed to reduce post-fire hazardous fuels and mitigate re-burn effects, but debate remains about its effectiveness when considering fuel loadings are dynamic, and re-burn occurrence is stochastic, in time. Therefore, evaluating salvage loggings capacity to reduce hazardous fuels requires estimating fuel loadings in unmanipulated and salvaged stands over long time periods. We sampled for snag dynamics, decomposition rates, and fuel loadings within unmanipulated high-severity portions of 7 fires, spanning a 24-year chronosequence, in dry-mixed conifer forests of…
Publication Type: Journal Article
A bird’s-eye view: Land-use planning and assessments in Oregon and Washington
Year: 2015
Developing forest lands and agricultural lands for other uses has wide-ranging implications. Land development can affect production from forest and agricultural lands, wildlife habitat quality, the spread of invasive species, water quality, wildfire control, and infrastructure costs. In its attempts to mitigate these effects, Oregon implemented statewide land-use planning laws in the early 1970s. Washington established less prescriptive laws in the 1990s. Policymakers, land managers, and various interest groups want to know the effect these laws have had on land use. Scientists with the…
Publication Type: Report
Sources and implications of bias and uncertainty in a century of US wildfire activity data
Year: 2015
Analyses to identify and relate trends in wildfire activity to factors such as climate, population, land use or land cover and wildland fire policy are increasingly popular in the United States. There is a wealth of US wildfire activity data available for such analyses, but users must be aware of inherent reporting biases, inconsistencies and uncertainty in the data in order to maximise the integrity and utility of their work. Data for analysis are generally acquired from archival summary reports of the federal or interagency fire organisations; incident-level wildfire reporting systems of…
Publication Type: Journal Article
Modeling spatial and temporal dynamics of wind flow and potential fire behavior following a mountain pine beetle outbreak in a lodgepole pine forest
Year: 2015
Patches of live, dead, and dying trees resulting from bark beetle-caused mortality alter spatial and temporal variability in the canopy and surface fuel complex through changes in the foliar moisture content of attacked trees and through the redistribution of canopy fuels. The resulting heterogeneous fuels complexes alter within-canopy wind flow, wind fluctuations, and rate of fire spread. However, there is currently little information about the potential influence of different rates and patterns of mortality on wind flow and fire behavior following bark beetle outbreaks. In this study, we…
Publication Type: Journal Article
Mapping the daily progression of large wildland fires using MODIS active fire data
Year: 2014
High temporal resolution information on burnt area is needed to improve fire behaviour and emissions models. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly and active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the timing of burnt area for 16 large wildland fires. For each fire, parameters for the kriging model were defined using variogram analysis. The optimal number of observations used to estimate a pixel’s time of burning varied between four and six among the fires studied. The median standard error from…
Publication Type: Journal Article
Taming the Software Chaos: True to its Promise, IFTDSS Eases the Burden of Fuels Treatment Planning - and Does a Lot More Besides
Year: 2014
A key problem reported by the fuels treatment planning community is the difficulty and inefficiency of evaluating and then applying many planning tools and applications. Fuels specialists have struggled to find, load, and learn all the different fuels and fire planning models, not to mention the interface of running, adjusting, and inputting data specific to each model without the ability to easily share inputs/outputs between models. The Interagency Fuels Treatment Decision Support System (IFTDSS) was conceived as a way for users to learn one interface, access a variety of data and models…
Publication Type: Report
Dry forest resilience varies under simulated climate-management scenarios in a central Oregon, USA landscape
Year: 2014
Determining appropriate actions to create or maintain landscapes resilient to climate change is challenging because of uncertainty associated with potential effects of climate change and their interactions with land management. We used a set of climate informed state-and-transition models to explore the effects of management and natural disturbances on vegetation composition and structure under different future climates. Models were run for dry forests of central Oregon under a fire suppression scenario (i.e., no management other than the continued suppression of wildfires) and an active…
Publication Type: Journal Article
How risk management can prevent future wildfire disasters in the wildland-urban interface
Year: 2014
Recent fire seasons in the western United States are some of the most damaging and costly on record. Wildfires in the wildland-urban interface on the Colorado Front Range, resulting in thousands of homes burned and civilian fatalities, although devastating, are not without historical reference. These fires are consistent with the characteristics of large, damaging, interface fires that threaten communities across much of the western United States. Wildfires are inevitable, but the destruction of homes, ecosystems, and lives is not. We propose the principles of risk analysis to provide land…
Publication Type: Report
Making a World of Difference in Fire and Climate Change
Year: 2014
Together with other stressors, interactions between fire and climate change are expressing their potential to drive ecosystem shifts and losses in biodiversity. Closely linked to human well-being in most regions of the globe, fires and their consequences should no longer be regarded as repeated surprise events. Instead, we should regard fires as common and enduring components of most terrestrial systems, including their social context. At the global scale, too much fire and the wrong kinds of fire are trumping not enough fire as the most influential fire problems we must address. Intensified…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 8
- 9
- 10
- 11
- 12
- …
- Next page
- Last page