Skip to main content

Journal Article

Displaying 571 - 580 of 1072

Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA.

Year of Publication
2017
Publication Type

Fire-prone landscapes present many challenges for both managers and policy makers in developing adaptive behaviors and institutions. We used a coupled human and natural systems framework and an agent-based landscape model to examine how alternative management scenarios affect fire and ecosystem services metrics in a fire-prone multiownership landscape in the eastern Cascades of Oregon.

Spatiotemporal dynamics of simulated wildfire, forest management, and forest succession in central Oregon, USA.

Year of Publication
2017
Publication Type

We use the simulation model Envision to analyze long-term wildfire dynamics and the effects of different fuel management scenarios in central Oregon, USA. We simulated a 50-year future where fuel management activities were increased by doubling and tripling the current area treated while retaining existing treatment strategies in terms of spatial distribution and treatment type.

California Spotted Owl (Strix occidentalis occidentalis) habitat use patterns in a burned landscape.

Year of Publication
2017
Publication Type

Fire is a dynamic ecosystem process of mixed-conifer forests of the Sierra Nevada, but there is limited scientific information addressing wildlife habitat use in burned landscapes. Recent studies have presented contradictory information regarding the effects of stand-replacing wildfires on Spotted Owls (Strix occidentalis) and their habitat.

Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America

Year of Publication
2017
Publication Type

Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB.