Skip to main content

Soils and Woody Debris

Displaying 11 - 20 of 64

Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska

Year of Publication
2023
Publication Type

Boreal ecosystems account for 29% of the world's total forested area and contain more carbon than any other terrestrial biome. Over the past 60 years, Alaska has warmed twice as rapidly as the contiguous U.S. and wildfire activity has increased, including the number of fires, area burned, and frequency of large wildfire seasons.

Pyrogenic carbon decomposition critical to resolving fire’s role in the Earth system

Year of Publication
2022
Publication Type

Recently identified post-fire carbon fluxes indicate that, to understand whether global fires represent a net carbon source or sink, one must consider both terrestrial carbon retention through pyrogenic carbon production and carbon losses via multiple pathways. Here these legacy source and sink pathways are quantified using a CMIP6 land surface model to estimate Earth’s fire carbon budget.

The sensitivity of US wildfire occurrence to pre-season soil moisture conditions across ecosystems

Year of Publication
2018
Publication Type

It is generally accepted that year-to-year variability in moisture conditions and drought are linked with increased wildfire occurrence. However, quantifying the sensitivity of wildfire to surface moisture state at seasonal lead-times has been challenging due to the absence of a long soil moisture record with the appropriate coverage and spatial resolution for continental-scale analysis.

Reburn in the Rain Shadow

Year of Publication
2018
Publication Type

Wildfires consume existing forest fuels but also leave behind dead shrubs and trees that become fuel to future wildfires. Harvesting firekilled trees is sometimes proposed as an economical approach for reducing future fuels and wildfire severity. Postfire logging, however, is controversial. Some question its fuel reduction benefits and its ecological impacts. David W.