Skip to main content
Skip to main content

Fuels and Fuel Treatments

Displaying 191 - 200 of 264

Use of night vision goggles for aerial forest fire protection

Year of Publication
2014
Publication Type

Night-time flight searches using night vision goggles have the potential to improve early aerial detection of forest fires, which could in turn improve suppression effectiveness and reduce costs. Two sets of flight trials explored this potential in an operational context.

Fire and fuels

Year of Publication
2014
Publication Type

Recent studies of historical fire regimes indicate that fires occurring prior to Euro-American settlement were characterized by a high degree of spatial complexity that was driven by heterogeneity in vegetation/fuels and topography and influenced by variability in climate, which mediated the timing, effects, and extents of fires over time.

Integrating Social, Economic, and Ecological Values Across Large Landscapes

Year of Publication
2014
Publication Type

The Integrated Landscape Assessment Project (ILAP) was a multiyear effort to produce information, maps, and models to help land managers, policymakers, and others conduct mid- to broad-scale (e.g., watersheds to states and larger areas) prioritization of land management actions, perform landscape assessments, and estimate cumulative effects of management actions for planning and other purposes.

Wildland fire emissions, carbon, and climate: Modeling fuel consumption

Year of Publication
2014
Publication Type

Fuel consumption specifies the amount of vegetative biomass consumed during wildland fire. It is a two-stage process of pyrolysis and combustion that occurs simultaneously and at different rates depending on the characteristics and condition of the fuel, weather, topography, and in the case of prescribed fire, ignition rate and pattern.

Fire behavior in masticated fuels: A review

Year of Publication
2014
Publication Type

Mastication is an increasingly common fuels treatment that redistributes “ladder” fuels to the forest floor to reduce vertical fuel continuity, crown fire potential, and fireline intensity, but fuel models do not exist for predicting fire behavior in these fuel types.