Skip to main content

Fuels and Fuel Treatments

Displaying 161 - 170 of 217

Fire behavior in masticated fuels: A review

Year of Publication
2014
Publication Type

Mastication is an increasingly common fuels treatment that redistributes “ladder” fuels to the forest floor to reduce vertical fuel continuity, crown fire potential, and fireline intensity, but fuel models do not exist for predicting fire behavior in these fuel types.

Wildland fire emissions, carbon, and climate: Modeling fuel consumption

Year of Publication
2014
Publication Type

Fuel consumption specifies the amount of vegetative biomass consumed during wildland fire. It is a two-stage process of pyrolysis and combustion that occurs simultaneously and at different rates depending on the characteristics and condition of the fuel, weather, topography, and in the case of prescribed fire, ignition rate and pattern.

Effectiveness of fuel treatments for mitigating wildfire risk and sequestering forest carbon: A case study in the Lake Tahoe Basin

Year of Publication
2014
Publication Type

Fuel-reduction treatments are used extensively to reduce wildfire risk and restore forest diversity and function. In the near future, increasing regulation of carbon (C) emissions may force forest managers to balance the use of fuel treatments for reducing wildfire risk against an alternative goal of C sequestration.

Vegetation Recovery and Fuel Reduction after Seasonal Burning of Western Juniper

Year of Publication
2014
Publication Type

The decrease in fire activity has been recognized as a main cause of expansion of North American woodlands. Piñon-juniper habitat in the western United States has expanded in area nearly 10-fold since the late 1800s. Woodland control measures using chainsaws, heavy equipment, and prescribed fire are used to restore sagebrush steppe plant communities.