Research Database
Displaying 1 - 20 of 33
Examining the influence of mid-tropospheric conditions and surface wind changes on extremely large fires and fire growth days
Year: 2023
Background: Previous work by the author and others has examined weather associated with growth of exceptionally large fires (‘Fires of Unusual Size’, or FOUS), looking at three of four factors associated with critical fire weather patterns: antecedent drying, high wind and low humidity. However, the authors did not examine atmospheric stability, the fourth factor. Aims: This study examined the relationships of mid-tropospheric stability and dryness used in the Haines Index, and changes in surface wind speed or direction, to growth of FOUS. Methods. Weather measures were paired with daily…
Publication Type: Journal Article
High-severity burned area and proportion exceed historic conditions in Sierra Nevada, California, and adjacent ranges
Year: 2023
Although fire is a fundamental ecological process in western North American forests, climate warming and accumulating forest fuels due to fire suppression have led to wildfires that burn at high severity across larger fractions of their footprint than were historically typical. These trends have spiked upwards in recent years and are particularly pronounced in the Sierra Nevada–Southern Cascades ecoregion of California, USA, and neighboring states. We assessed annual area burned (AAB) and percentage of area burned at high and low-to-moderate severity for seven major forest types in this…
Publication Type: Journal Article
The outsized role of California’s largest wildfires in changing forest burn patterns and coarsening ecosystem scale
Year: 2023
Highlights • We evaluated trends for 1,809 fires that burned 1985–2020 across California forests. • Top 1% of fires by size burned 47% of total area burned across the study period. • Top 1% (18 fires) produced 58% of high and 42% of low-moderate severity area. • Top 1% created novel landscape patterns of large burn severity patches. • These large fires create new opportunities for managing forest resilience. Although recent large wildfires in California forests are well publicized in media and scientific literature, their cumulative effects on forest structure and implications for forest…
Publication Type: Journal Article
Postglacial vegetation and fire history with a high-resolution analysis of tephra impacts, High Cascade Range, Oregon, USA
Year: 2023
The postglacial history of vegetation, wildfire, and climate in the Cascade Range (Oregon) is only partly understood. This study uses high-resolution macroscopic charcoal and pollen analysis from a 13-m, 14,500 years sediment record from Gold Lake, located in a montane forest, to reconstruct forest vegetation and fire history. The occurrence of three tephra layers, including a 78-cm airfall Mazama tephra, as well as highly laminated segments, allows one to study tephra impacts on vegetation at a fine temporal resolution. From the Late Glacial through the Younger Dryas, pollen spectra vary…
Publication Type: Journal Article
Factors influencing ember accumulation near a building
Year: 2023
Background: Embers, also known as firebrands, are the leading cause of building ignition during wildland–urban fires. This is attributed both to direct ignition of material on, in, or attached to the building, and indirect ignition where they ignite vegetation or other combustible material near the building, which results in a radiant heat and/or direct flame contact exposure that ignites the building. Indirect ignition of a building can occur when embers accumulate on and ignite nearby combustible fuel, resulting in radiant heat or flame constant exposure. Aims/implications: Factors that…
Publication Type: Journal Article
Identifying building locations in the wildland–urban interface before and after fires with convolutional neural networks
Year: 2023
Background: Wildland–urban interface (WUI) maps identify areas with wildfire risk, but they are often outdated owing to the lack of building data. Convolutional neural networks (CNNs) can extract building locations from remote sensing data, but their accuracy in WUI areas is unknown. Additionally, CNNs are computationally intensive and technically complex, making them challenging for end-users, such as those who use or create WUI maps, to apply. Aims: We identified buildings pre- and post-wildfire and estimated building destruction for three California wildfires: Camp, Tubbs and Woolsey.…
Publication Type: Journal Article
Landscape‑scale fuel treatment effectiveness: lessons learned from wildland fire case studies in forests of the western United States and Great Lakes region
Year: 2023
Background Maximizing the effectiveness of fuel treatments at landscape scales is a key research and management need given the inability to treat all areas at risk from wildfire. We synthesized information from case studies that documented the influence of fuel treatments on wildfire events. We used a systematic review to identify relevant case studies and extracted information through a series of targeted questions to summarize experiential knowledge of landscape fuel treatment effectiveness. Within a larger literature search, we identified 18 case study reports that included (1) manager…
Publication Type: Journal Article
Less fuel for the next fire? Short-interval fire delays forest recovery and interacting drivers amplify effects
Year: 2023
As 21st-century climate and disturbance dynamics depart from historic baselines, ecosystem resilience is uncertain. Multiple drivers are changing simultaneously, and interactions among drivers could amplify ecosystem vulnerability to change. Subalpine forests in Greater Yellowstone (Northern Rocky Mountains, USA) were historically resilient to infrequent (100–300 year), severe fire. We sampled paired short-interval (<30-year) and long-interval (>125-year) post-fire plots most recently burned between 1988 and 2018 to address two questions: (1) How do short-interval fire, climate,…
Publication Type: Journal Article
Changes in wildfire occurrence and risk to homes from 1990 through 2019 in the Southern Rocky Mountains, USA
Year: 2023
Wildfires and housing development have increased since the 1990s, presenting unique challenges for wildfire management. However, it is unclear how the relative influences of housing growth and changing wildfire occurrence have altered risk to homes, or the potential for wildfire to threaten homes. We used a random forests model to predict burn probability in relation to weather variables at 1-km resolution and monthly intervals from 1990 through 2019 in the Southern Rocky Mountains ecoregion. We quantified risk by combining the predicted burn probabilities with decadal housing density. We…
Publication Type: Journal Article
Response of forest productivity to changes in growth and fire regime due to climate change
Year: 2023
Climate change is having complex impacts on the boreal forest, modulating both tree growth limiting factors and fire regime. However, these aspects are usually projected independently when estimating climate change effect on the boreal forest. Using a combination of 3 different methods, our goal is to assess the combined impact of changes in growth and fire regime due to climate change on the timber supply at the transitions from closed to open boreal coniferous forests in Québec, Canada. In order to identify the areas that are likely to be the most sensitive to climate change, we projected…
Publication Type: Journal Article
Consistent, high-accuracy mapping of daily and sub-daily wildfire growth with satellite observations
Year: 2023
Background: Fire research and management applications, such as fire behaviour analysis and emissions modelling, require consistent, highly resolved spatiotemporal information on wildfire growth progression. Aims: We developed a new fire mapping method that uses quality-assured sub-daily active fire/thermal anomaly satellite retrievals (2003–2020 MODIS and 2012–2020 VIIRS data) to develop a high-resolution wildfire growth dataset, including growth areas, perimeters, and cross-referenced fire information from agency reports. Methods: Satellite fire detections were buffered using a historical…
Publication Type: Journal Article
Projecting live fuel moisture content via deep learning
Year: 2023
Background: Live fuel moisture content (LFMC) is a key environmental indicator used to monitor for high wildfire risk conditions. Many statistical models have been proposed to predict LFMC from remotely sensed data; however, almost all these estimate current LFMC (nowcasting models). Accurate modelling of LFMC in advance (projection models) would provide wildfire managers with more timely information for assessing and preparing for wildfire risk. Aims: The aim of this study was to investigate the potential for deep learning models to predict LFMC across the continental United States 3 months…
Publication Type: Journal Article
Drivers of California’s changing wildfires: a state-of-the-knowledge synthesis
Year: 2023
Over the past four decades, annual area burned has increased significantly in California and across the western USA. This trend reflects a confluence of intersecting factors that affect wildfire regimes. It is correlated with increasing temperatures and atmospheric vapour pressure deficit. Anthropogenic climate change is the driver behind much of this change, in addition to influencing other climate-related factors, such as compression of the winter wet season. These climatic trends and associated increases in fire activity are projected to continue into the future. Additionally, factors…
Publication Type: Journal Article
A Conceptual Framework for Knowledge Exchange in a Wildland Fire Research and Practice Context
Year: 2023
Wildland fire is an important natural disturbance in many vegetated areas of the world. However, fire management actions are critical not only to prevent and suppress unwanted fires, but also mitigate and recover from the negative impacts of fire on people and communities. Advancements in wildland fire science can help inform these necessary actions in wildland fire management. How science is created and integrated into these fire management decision-making processes, whether through collaborations with external researchers and/or with scientists within a wildland fire management agency…
Publication Type: Journal Article
Consistent spatial scaling of high-severity wildfire can inform expected future patterns of burn severity
Year: 2023
Increasing wildfire activity in forests worldwide has driven urgency in understanding current and future fire regimes. Spatial patterns of area burned at high severity strongly shape forest resilience and constitute a key dimension of fire regimes, yet remain difficult to predict. To characterize the range of burn severity patterns expected within contemporary fire regimes, we quantified scaling relationships relating fire size to patterns of burn severity. Using 1615 fires occurring across the Northwest United States between 1985 and 2020, we evaluated scaling relationships within fire…
Publication Type: Journal Article
Connecting dryland fine-fuel assessments to wildfire exposure and natural resource values at risk
Year: 2023
Background Wildland fire in arid and semi-arid (dryland) regions can intensify when climatic, biophysical, and land-use factors increase fuel load and continuity. To inform wildland fire management under these conditions, we developed high-resolution (10-m) estimates of fine fuel across the Altar Valley in southern Arizona, USA, which spans dryland, grass-dominated ecosystems that are administered by multiple land managers and owners. We coupled field measurements at the end of the 2021 growing season with Sentinel-2 satellite imagery and vegetation indices acquired during and after the…
Publication Type: Journal Article
Refuge-yeah or refuge-nah? Predicting locations of forest resistance and recruitment in a fiery world
Year: 2023
Climate warming, land use change, and altered fire regimes are driving ecological transformations that can have critical effects on Earth's biota. Fire refugia—locations that are burned less frequently or severely than their surroundings—may act as sites of relative stability during this period of rapid change by being resistant to fire and supporting post-fire recovery in adjacent areas. Because of their value to forest ecosystem persistence, there is an urgent need to anticipate where refugia are most likely to be found and where they align with environmental conditions that support post-…
Publication Type: Journal Article
Future regional increases in simultaneous large Western USA wildfires
Year: 2023
Background: Wildfire simultaneity affects the availability and distribution of resources for fire management: multiple small fires require more resources to fight than one large fire does. Aims: The aim of this study was to project the effects of climate change on simultaneous large wildfires in the Western USA, regionalised by administrative divisions used for wildfire management. Methods: We modelled historical wildfire simultaneity as a function of selected fire indexes using generalised linear models trained on observed climate and fire data from 1984 to 2016. We then applied these models…
Publication Type: Journal Article
Abrupt, climate-induced increase in wildfires in British Columbia since the mid-2000s
Year: 2023
In the province of British Columbia, Canada, four of the most severe wildfire seasons of the last century occurred in the past 7 years: 2017, 2018, 2021, and 2023. To investigate trends in wildfire activity and fire-conducive climate, we conducted an analysis of mapped wildfire perimeters and annual climate data for the period of 1919–2021. Results show that after a century-long decline, fire activity increased from 2005 onwards, coinciding with a sharp reversal in the wetting trend of the 20th century. Even as precipitation levels remain high, moisture deficits have increased due to rapid…
Publication Type: Journal Article
Does large area burned mean a bad fire year? Comparing contemporary wildfire years to historical fire regimes informs the restoration task in fire-dependent forests
Year: 2023
Wildfires and fire seasons are commonly rated largely on the simple metric of area burned (more hectares: bad). A seemingly paradoxical narrative frames large fire seasons as a symptom of a forest health problem (too much fire), while simultaneously stating that fire-dependent forests lack sufficient fire to maintain system resilience (too little fire). One key to resolving this paradox is placing contemporary fire years in the context of historical fire regimes, considering not only total fire area but also burn severity distributions. Historical regimes can also inform forest restoration…
Publication Type: Journal Article