Research Database
Displaying 1 - 6 of 6
Morphological and physiological response of conifer seedlings to drought conditioning
Year: 2025
Increased frequency, severity, and duration of droughts and increased wildfire severity are impacting many conifer forests globally. Reforestation in these changing disturbance regimes requires tree seedlings capable of establishing in hotter and drier climates. We evaluated the morphological and physiological effects of drought conditioning on second-year ponderosa pine (Pinus ponderosa), western white pine (Pinus monticola), and western larch (Larix occidentalis) seedlings. Treatments included a well-watered control (75% of container capacity) and a water-limited…
Publication Type: Journal Article
Impact of Thinning Strategy, Surface Fuel Loading and Burning Conditions on Fuel Treatment Efficacy in Ponderosa Pine Dominated Forests of the Southern Rocky Mountains
Year: 2025
Managers across the western US seek effective fuel treatment strategies to mitigate hazardous fuel loads and risks of high severity fire in dry conifer forests. Conventional fuel hazard reduction treatments emphasis reducing canopy fuel continuity and surface fuel loading using an even spaced, thin-from-below approach, with pile or broadcast burning of residual surface fuels. Such treatments often result in forest structures that differ from the historical conditions. Ecological restoration treatments emphasize enhancing structural heterogeneity but may produce less fire-resistant stands…
Publication Type: Journal Article
Trees in Fire-Maintained Forests Have Similar Growth Responses to Drought, but Greater Stomatal Conductance Than Trees in Fire-Excluded Forests
Year: 2025
In the western US, increased tree density in dry conifer forests from fire exclusion has caused tree growth declines, which is being compounded by hotter multi-year droughts. The reintroduction of frequent, low-severity wildfire reduces forest density by removing fire-intolerant trees, which can reduce competition for water and improve tree growth response to drought. We assessed how lower forest density following frequent, low-severity wildfire affected tree stomatal conductance and growth response to drought by coring and measuring competition surrounding ponderosa pines (Pinus…
Publication Type: Journal Article
Perspectives: Six opportunities to improve understanding of fuel treatment longevity in historically frequent-fire forests
Year: 2025
Fuel-reduction and restoration treatments (“treatments”) are conducted extensively in dry and historically frequent-fire forests of interior western North America (“dry forests”) to reduce potential for uncharacteristically severe wildfire. However, limited understanding of treatment longevity and long-term treatment effects creates potential for inefficient treatment maintenance and inaccurate forecasting of wildfire behavior. In this perspectives paper, we briefly summarize current understanding of long-term effects of three common treatment types (burn-only, thin-only, and thin-plus-burn)…
Publication Type: Journal Article
Mechanical thinning restores ecological functions in a seasonally dry ponderosa pine forest in the inland Pacific Northwest, USA
Year: 2023
An increasingly important goal of federal land managers in seasonally dry forests of the western US is restoring forest resilience. In this study, we quantified the degree to which a thinning treatment in a dry forest of eastern Oregon restored aspects of forest resilience by focusing on key functional attributes of our study system. First, we measured several physiological responses of overstory trees that are associated with resilience, including radial growth, resin production, abundance of non-structural carbohydrates (NSC), and leaf area. Second, we investigated understory vegetation…
Publication Type: Journal Article
Topographic information improves simulated patterns of post-fire conifer regeneration in the southwest United States
Year: 2023
The western United States is projected to experience more frequent and severe wildfires in the future due to drier and hotter climate conditions, exacerbating destructive wildfire impacts on forest ecosystems such as tree mortality and unsuccessful post-fire regeneration. While empirical studies have revealed strong relationships between topographical information and plant regeneration, ecological processes in ecosystem models have either not fully addressed topography-mediated effects on the probability of plant regeneration, or the probability is only controlled by climate-related factors,…
Publication Type: Journal Article