Research Database
Displaying 1 - 20 of 111
Evaluating a simulation-based wildfire burn probability map for the conterminous US
Year: 2025
Background: Wildfire simulation models are used to derive maps of burn probability (BP) based on fuels, weather, topography and ignition locations, and BP maps are key components of wildfire risk assessments.Aims: Few studies have compared BP maps with real-world fires to evaluate their suitability for near-future risk assessment. Here, we evaluated a BP map for the conterminous US based on the large fire simulation model FSim.Methods: We compared BP with observed wildfires from 2016 to 2022 across 128 regions representing similar fire regimes (‘pyromes’). We…
Publication Type: Journal Article
Integrated fire management as an adaptation and mitigation strategy to altered fire regimes
Year: 2025
Altered fire regimes are a global challenge, increasingly exacerbated by climate change, which modifies fire weather and prolongs fire seasons. These changing conditions heighten the vulnerability of ecosystems and human populations to the impacts of wildfires on the environment, society, and the economy. The rapid pace of these changes exposes significant gaps in knowledge, tools, technology, and governance structures needed to adopt informed, holistic approaches to fire management that address both current and future challenges. Integrated Fire Management is an approach that combines fire…
Publication Type: Journal Article
Canadian forests are more conducive to high-severity fires in recent decades
Year: 2025
Canada has experienced more-intense and longer fire seasons with more-frequent uncontrollable wildfires over the past decades. However, the effect of these changes remains unknown. This study identifies driving forces of burn severity and estimates its spatiotemporal variations in Canadian forests. Our results show that fuel aridity was the most influential driver of burn severity, summer months were more prone to severe burning, and the northern areas were most influenced by the changing climate. About 6% (0.54 to 14.64%) of the modeled areas show significant increases in the number of days…
Publication Type: Journal Article
Changing fire regimes in the Great Basin USA
Year: 2025
Wildfire is a natural disturbance in landscapes of the Western United States, but the effects and extents of fire are changing. Differences between historical and contemporary fire regimes can help identify reasons for observed changes in landscape composition. People living and working in the Great Basin, USA, are observing altered fire conditions, but spatial information about the degree and direction of change and departure from historical fire regimes is lacking. This study estimates how fire regimes have changed in the major Great Basin vegetation types over the past 60 years with…
Publication Type: Journal Article
Increasing Hydroclimatic Whiplash Can Amplify Wildfire Risk in a Warming Climate
Year: 2025
On January 7 and 8, 2025, a series of wind-driven wildfires occurred in Los Angeles County in Southern California. Two of these fires ignited in dense woody chaparral shrubland and immediately burned into adjacent populated areas–the Palisades Fire on the coastal slopes of the Santa Monica Mountains and the Eaton fire in the foothills of the San Gabriel Mountains. Both fires ultimately eclipsed the traditionally-defined “wildland-urban interface” boundaries by burning structure-to-structure as an urban conflagration. The scope of the devastation is staggering; at the time of writing, the…
Publication Type: Report
A fire deficit persists across diverse North American forests despite recent increases in area burned
Year: 2025
Rapid increases in wildfire area burned across North American forests pose novel challenges for managers and society. Increasing area burned raises questions about whether, and to what degree, contemporary fire regimes (1984–2022) are still departed from historical fire regimes (pre-1880). We use the North American tree-ring fire-scar network (NAFSN), a multi-century record comprising >1800 fire-scar sites spanning diverse forest types, and contemporary fire perimeters to ask whether there is a contemporary fire surplus or fire deficit, and whether recent fire years are unprecedented…
Publication Type: Journal Article
Hydrometeorology-wildfire relationship analysis based on a wildfire bivariate probabilistic framework in different ecoregions of the continental United States
Year: 2024
Wildfires are a natural part of the ecosystem in the U.S.. It is vital to classify wildfires using a comprehensive approach that simultaneously considers wildfire activity (the number of wildfires) and burned area. On this basis, the influence of hydrometeorological variables on wildfires can be further analyzed. Therefore, this study first classified wildfire types using a wildfire bivariate probability framework. Then, by considering six hydrometeorological variables, the dominant hydrometeorological variables for different wildfire types in 17 ecoregions of the United States were…
Publication Type: Journal Article
Simulated Future Shifts in Wildfire Regimes in Moist Forests of Pacific Northwest, USA
Year: 2024
Fire is an integral natural disturbance in the moist temperate forests of the Pacific Northwest of the United States, but future changes remain uncertain. Fire regimes in this climatically and biophysically diverse region are complex, but typically climate limited. One challenge for interpreting potential changes is conveying projection uncertainty. Using projections of Energy Release Component (ERC) derived from 12 global climate models (GCM) that vary in performance relative to the region's contemporary climate, we simulated thousands of plausible fire seasons with the stochastic spatial…
Publication Type: Journal Article
Repeated fuel treatments fall short of fire-adapted regeneration objectives in a Sierra Nevada mixed conifer forest, USA
Year: 2024
Fire exclusion over the last two centuries has driven a significant fire deficit in the forests of western North America, leading to widespread changes in the composition and structure of these historically fire-adapted ecosystems. Fuel treatments have been increasingly applied over the last few decades to mitigate fire hazard, yet it is unclear whether these fuel-focused treatments restore the fire-adapted conditions and species that will allow forests to persist into the future. A vital prerequisite of restoring fire-adaptedness is ongoing establishment of fire-tolerant tree species, and…
Publication Type: Journal Article
Managing fire-prone forests in a time of decreasing carbon carrying capacity
Year: 2024
Changing climatic conditions are increasing overstory tree mortality in forests globally. This restructuring of the distribution of biomass is making already flammable forests more combustible, posing a major challenge for managing the transition to a lower biomass state. In western US dry conifer forests, tree density resulting from over a century of fire-exclusion practices has increased the risk of high-severity wildfire and susceptibility to climate-driven mortality. Reducing dead fuel loads will require new approaches to mitigate risk to the remaining live trees by preparing forests to…
Publication Type: Journal Article
Drought before fire increases tree mortality after fire
Year: 2024
Fire and drought are expected to increase in frequency and severity in temperate forests due to climate change. To evaluate whether drought increases the likelihood of post-fire tree mortality, we used a large database of tree survival and mortality from 32 years of wildland fires covering four dominant western North American conifers. We used Bayesian hierarchical modeling to predict the probability of individual tree mortality after fire based on species—Pinus contorta (lodgepole pine), Abies concolor (white fir), Pseudotsuga menziesii (Douglas-fir), and Pinus…
Publication Type: Journal Article
Changing fire regimes and nuanced impacts on a critically imperiled species
Year: 2024
Wildfire activity throughout western North America is increasing which can have important consequences for species persistence. Native species have evolved disturbance-adapted traits that confer resilience to natural disturbance provided disturbances operate within their historical range of variability. This resilience can erode as disturbance regimes change and begin operating outside this range. We assessed wildfire impacts during 1987–2018 on the northern spotted owl, an imperiled species with complex relationships with late and early seral forest in the Pacific Northwest, USA. We analyzed…
Publication Type: Journal Article
Long-term sensitivity of ponderosa pine axial resin ducts to harvesting and prescribed burning
Year: 2024
Forest restoration treatments primarily aimed at reducing fuel load and preventing high-severity wildfires can also influence resilience to other disturbances. Many pine forests in temperate regions are subject to tree-killing bark beetle outbreaks (e.g., Dendroctonus, Ips), whose frequency and intensity are expected to increase with future climatic changes. Restoration treatments have the potential to increase resistance to bark beetle attacks, yet the underlying mechanisms of this response are still unclear. While the effect of forest restoration treatments on tree growth…
Publication Type: Journal Article
Fire history in northern Sierra Nevada mixed conifer forests across a distinct gradient in productivity
Year: 2024
BackgroundUnderstanding the role of fire in forested landscapes is fundamental to fire reintroduction efforts, yet few studies have examined how fire dynamics vary in response to interactions between local conditions, such as soil productivity, and more broadscale changes in climate. In this study, we examined historical fire frequency, seasonality, and spatial patterning in mixed conifer forests across a distinct gradient of soil productivity in the northern Sierra Nevada. We cross-dated 46 different wood samples containing 377 fire scars from 6 paired sites, located on and off of…
Publication Type: Journal Article
Pre-contact Indigenous fire stewardship: a research framework and application to a Pacific Northwest temperate rainforest
Year: 2024
Fire is a key disturbance process that shapes the structure and function of montane temperate rainforest in the Pacific Northwest (PNW). Recent research is revealing more frequent historical fire activity in the western central Cascades than expected by conventional theory. Indigenous peoples have lived in the PNW for millennia. However, Indigenous people's roles in shaping vegetation mosaics in montane temperate forests of the PNW has been overlooked, despite archaeological evidence of long-term, continuous human use of these landscapes. In this paper, we present a generalizable research…
Publication Type: Journal Article
Abiotic Factors Modify Ponderosa Pine Regeneration Outcomes After High-Severity Fire
Year: 2024
Large high-severity burn patches are increasingly common in southwestern US dry conifer forests. Seed-obligate conifers often fail to quickly regenerate large patches because their seeds rarely travel the distances required to reach core patch area. Abiotic factors may further alter the distance seeds can travel to regenerate a patch, which would change expected post-fire regeneration patterns. We used the presence and density of ponderosa pine regeneration as a proxy for seed dispersal to quantify the effect of abiotic factors on seed dispersal into high-severity patches. We established 45…
Publication Type: Journal Article
Historical pyrodiversity in Douglas-fir forests of the southern Cascades of Oregon, USA
Year: 2024
Our understanding of forest dynamics and successional pathways in coastal Douglas-fir (Pseudotsuga menziesii var menziesii) forests with relatively frequent mixed-severity fires is limited by a lack of annually precise dendroecological reconstructions that combine records of historical fires and tree establishment. The processes by which old-forest heterogeneity developed under historical fire regimes with recurrent low- and moderate-severity fires has not been well studied at fine temporal scales and across spatial scales. We developed crossdated multi-century records of fire and…
Publication Type: Journal Article
Indigenous pyrodiversity promotes plant diversity
Year: 2024
Pyrodiversity (temporally and spatially diverse fire histories) is thought to promote biodiversity by increasing environmental heterogeneity and replicating Indigenous fire regimes, yet studies of pyrodiversity-biodiversity relationships from areas under active Indigenous fire stewardship are rare. Here, we explored whether Indigenous pyrodiversity promoted plant richness and diversity in an arid ecosystem from north-western Australia. We selected landscapes that ranged from highly pyrodiverse and under active Indigenous burning to more coarse-scale and less diverse mosaics under lightning…
Publication Type: Journal Article
Response of forest productivity to changes in growth and fire regime due to climate change
Year: 2023
Climate change is having complex impacts on the boreal forest, modulating both tree growth limiting factors and fire regime. However, these aspects are usually projected independently when estimating climate change effect on the boreal forest. Using a combination of 3 different methods, our goal is to assess the combined impact of changes in growth and fire regime due to climate change on the timber supply at the transitions from closed to open boreal coniferous forests in Québec, Canada. In order to identify the areas that are likely to be the most sensitive to climate change, we projected…
Publication Type: Journal Article
Climate influences on future fire severity: a synthesis of climate-fire interactions and impacts on fire regimes, high-severity fire, and forests in the western United States
Year: 2023
Background
Increases in fire activity and changes in fire regimes have been documented in recent decades across the western United States. Climate change is expected to continue to exacerbate impacts to forested ecosystems by increasing the frequency, size, and severity of wildfires across the western United States (US). Warming temperatures and shifting precipitation patterns are altering western landscapes and making them more susceptible to high-severity fire. Increases in large patches of high-severity fire can result in significant impacts to landscape processes and ecosystem function…
Publication Type: Journal Article