Research Database
Displaying 1 - 6 of 6
Spatial and temporal assessment of responder exposure to snag hazards in post-fire environments
Year: 2019
Researchers and managers increasingly recognize enterprise risk management as critical to addressing contemporary fire management challenges. Quantitative wildfire risk assessments contribute by parsing and mapping potentially contradictory positive and negative fire effects. However, these assessments disregard risks to fire responders because they only address social and ecological resources and assets. In this study, we begin to overcome this deficiency by using a novel modeling approach that integrates remote sensing, field inventories, imputation-based vegetation modeling, and empirical…
Publication Type: Journal Article
Tamm Review: Reforestation for resilience in dry western U.S. forests
Year: 2019
The increasing frequency and severity of fire and drought events have negatively impacted the capacity and success of reforestation efforts in many dry, western U.S. forests. Challenges to reforestation include the cost and safety concerns of replanting large areas of standing dead trees, and high seedling and sapling mortality rates due to water stress, competing vegetation, and repeat fires that burn young plantations. Standard reforestation practices have emphasized establishing dense conifer cover with gridded planting, sometimes called 'pines in lines', followed by shrub control and pre-…
Publication Type: Journal Article
Evaluating Model Predictions of Fire Induced Tree Mortality Using Wildfire-Affected Forest Inventory Measurements
Year: 2019
Forest land managers rely on predictions of tree mortality generated from fire behavior models to identify stands for post-fire salvage and to design fuel reduction treatments that reduce mortality. A key challenge in improving the accuracy of these predictions is selecting appropriate wind and fuel moisture inputs. Our objective was to evaluate postfire mortality predictions using the Forest Vegetation Simulator Fire and Fuels Extension (FVS-FFE) to determine if using representative fire-weather data would improve prediction accuracy over two default weather scenarios. We used pre- and post-…
Publication Type: Journal Article
Short- and long-term effects of ponderosa pine fuel treatments intersected by the Egley Fire Complex, Oregon, USA
Year: 2019
Background Fuel treatments are widely used to alter fuels in forested ecosystems to mitigate wildfire behavior and effects. However, few studies have examined long-term ecological effects of interacting fuel treatments (commercial harvests, pre-commercial thinnings, pile and burning, and prescribed fire) and wildfire. Using annually fitted Landsat satellite-derived Normalized Burn Ratio (NBR) curves and paired pre-fire treated and untreated field sites, we tested changes in the differenced NBR (dNBR) and years since treatment as predictors of biophysical attributes one and nine years after…
Publication Type: Journal Article
Fire and tree death: understanding and improving modeling of fire-induced tree mortality
Year: 2018
Each year wildland fires kill and injure trees on millions of forested hectares globally, affecting plant and animal biodiversity, carbon storage, hydrologic processes, and ecosystem services. The underlying mechanisms of fire-caused tree mortality remain poorly understood, however, limiting the ability to accurately predict mortality and develop robust modeling applications, especially under novel future climates. Virtually all post-fire tree mortality prediction systems are based on the same underlying empirical model described in Ryan and Reinhardt (1988 Can. J. For. Res. 18 1291–7), which…
Publication Type: Journal Article
Multitemporal LiDAR improves estimates of fire severity in forested landscapes
Year: 2018
Landsat-based fire severity maps have limited ecological resolution, which can hinder assessments of change to specific resources. Therefore, we evaluated the use of pre- and post-fire LiDAR, and combined LiDAR with Landsat-based relative differenced Normalized Burn Ratio (RdNBR) estimates, to increase the accuracy and resolution of basal area mortality estimation. We vertically segmented point clouds and performed model selection on spectral and spatial pre- and post-fire LiDAR metrics and their absolute differences. Our best multitemporal LiDAR model included change in mean intensity values…
Publication Type: Journal Article