Research Database
Displaying 1 - 20 of 34
High-severity burned area and proportion exceed historic conditions in Sierra Nevada, California, and adjacent ranges
Year: 2023
Although fire is a fundamental ecological process in western North American forests, climate warming and accumulating forest fuels due to fire suppression have led to wildfires that burn at high severity across larger fractions of their footprint than were historically typical. These trends have spiked upwards in recent years and are particularly pronounced in the Sierra Nevada–Southern Cascades ecoregion of California, USA, and neighboring states. We assessed annual area burned (AAB) and percentage of area burned at high and low-to-moderate severity for seven major forest types in this…
Publication Type: Journal Article
Homeowner firewise behaviors in fire-prone central Oregon: An exploration of the attitudinal, situational, and cultural worldviews impacting pre-fire mitigation actions Author links open overlay panel
Year: 2023
Highlights • People with egalitarian cultural traits are more likely to engage in fire mitigation behaviors. • Concern, experience, and proximity all have a positive relationship to engagement in fire mitigation behaviors. • Fire-resistant building materials and landscaping requirements are effective policy tools for homeowner mitigation actions. • Younger homeowners and women are more likely to engage in fire mitigation actions. Abstract As a result of climate change and past management practices, wildfires are becoming larger and occurring more frequently than ever before in the Western U.S…
Publication Type: Journal Article
Postglacial vegetation and fire history with a high-resolution analysis of tephra impacts, High Cascade Range, Oregon, USA
Year: 2023
The postglacial history of vegetation, wildfire, and climate in the Cascade Range (Oregon) is only partly understood. This study uses high-resolution macroscopic charcoal and pollen analysis from a 13-m, 14,500 years sediment record from Gold Lake, located in a montane forest, to reconstruct forest vegetation and fire history. The occurrence of three tephra layers, including a 78-cm airfall Mazama tephra, as well as highly laminated segments, allows one to study tephra impacts on vegetation at a fine temporal resolution. From the Late Glacial through the Younger Dryas, pollen spectra vary…
Publication Type: Journal Article
Factors influencing ember accumulation near a building
Year: 2023
Background: Embers, also known as firebrands, are the leading cause of building ignition during wildland–urban fires. This is attributed both to direct ignition of material on, in, or attached to the building, and indirect ignition where they ignite vegetation or other combustible material near the building, which results in a radiant heat and/or direct flame contact exposure that ignites the building. Indirect ignition of a building can occur when embers accumulate on and ignite nearby combustible fuel, resulting in radiant heat or flame constant exposure. Aims/implications: Factors that…
Publication Type: Journal Article
Identifying building locations in the wildland–urban interface before and after fires with convolutional neural networks
Year: 2023
Background: Wildland–urban interface (WUI) maps identify areas with wildfire risk, but they are often outdated owing to the lack of building data. Convolutional neural networks (CNNs) can extract building locations from remote sensing data, but their accuracy in WUI areas is unknown. Additionally, CNNs are computationally intensive and technically complex, making them challenging for end-users, such as those who use or create WUI maps, to apply. Aims: We identified buildings pre- and post-wildfire and estimated building destruction for three California wildfires: Camp, Tubbs and Woolsey.…
Publication Type: Journal Article
Fire-resistant Plants for Home Landscapes: Reduce Wildfire Risk with Proper Plant Selection and Placement
Year: 2023
In the Pacific Northwest, fires are a natural part of the changing landscape. As homeowners continue to build in the wildland-urban interface, they must take special precautions to protect their lives, homes, and property.One way to do this is to create a defensible space around your home. This is the area between your home or other structures, where potential fuel (materials or vegetation) have been modified, reduced, or cleared to create a barrier and slow the spread of wildfire toward your home. A defensible space also allows room for firefighters to fight the fire safely. Three critical…
Publication Type: Report
Less fuel for the next fire? Short-interval fire delays forest recovery and interacting drivers amplify effects
Year: 2023
As 21st-century climate and disturbance dynamics depart from historic baselines, ecosystem resilience is uncertain. Multiple drivers are changing simultaneously, and interactions among drivers could amplify ecosystem vulnerability to change. Subalpine forests in Greater Yellowstone (Northern Rocky Mountains, USA) were historically resilient to infrequent (100–300 year), severe fire. We sampled paired short-interval (<30-year) and long-interval (>125-year) post-fire plots most recently burned between 1988 and 2018 to address two questions: (1) How do short-interval fire, climate,…
Publication Type: Journal Article
Changes in wildfire occurrence and risk to homes from 1990 through 2019 in the Southern Rocky Mountains, USA
Year: 2023
Wildfires and housing development have increased since the 1990s, presenting unique challenges for wildfire management. However, it is unclear how the relative influences of housing growth and changing wildfire occurrence have altered risk to homes, or the potential for wildfire to threaten homes. We used a random forests model to predict burn probability in relation to weather variables at 1-km resolution and monthly intervals from 1990 through 2019 in the Southern Rocky Mountains ecoregion. We quantified risk by combining the predicted burn probabilities with decadal housing density. We…
Publication Type: Journal Article
Unprotected lands: A case study of a wildland-urban interface community in “No-Man's land”
Year: 2023
There are areas of the United States that have no formalized fire protection. These lands are colloquially referred to as “no-man’s land” but are recognized by many land management agencies as unprotected lands. Unprotected lands are generally rural landscapes and exist in areas that are sparsely populated and lack formalized fire protection. In some cases, lands that are designated as wildland-urban interface are comprised of significant portions of unprotected lands. Currently, there has been little in the way of research completed that pertains to the overall amount of land that is…
Publication Type: Journal Article
Response of forest productivity to changes in growth and fire regime due to climate change
Year: 2023
Climate change is having complex impacts on the boreal forest, modulating both tree growth limiting factors and fire regime. However, these aspects are usually projected independently when estimating climate change effect on the boreal forest. Using a combination of 3 different methods, our goal is to assess the combined impact of changes in growth and fire regime due to climate change on the timber supply at the transitions from closed to open boreal coniferous forests in Québec, Canada. In order to identify the areas that are likely to be the most sensitive to climate change, we projected…
Publication Type: Journal Article
Burnover events identified during the 2018 Camp Fire
Year: 2023
Background: The Camp Fire burned through communities in Butte County, California, on 8 November 2018. The fire destroyed over 18 000 structures and caused 85 fatalities, mostly within the first 12 h of the incident. Aims: A post-fire case study was conducted to learn from the devastating incident. Methods: The case study was supported by detailed first-hand accounts from 157 first responders, photos and videos, first responder radio logs, and other field data. Subsequent analysis and data integration yielded a timeline reconstruction of the first 24 h of the entire event, as well as…
Publication Type: Journal Article
Drivers of California’s changing wildfires: a state-of-the-knowledge synthesis
Year: 2023
Over the past four decades, annual area burned has increased significantly in California and across the western USA. This trend reflects a confluence of intersecting factors that affect wildfire regimes. It is correlated with increasing temperatures and atmospheric vapour pressure deficit. Anthropogenic climate change is the driver behind much of this change, in addition to influencing other climate-related factors, such as compression of the winter wet season. These climatic trends and associated increases in fire activity are projected to continue into the future. Additionally, factors…
Publication Type: Journal Article
Flammability study of decking sections found at the Wildland–Urban interface at different scales
Year: 2023
This work presents a study of the fire reaction of two types of decking sections (wood and thermoplastic) exposed to a radiant heat source. The flammability was studied at two scales: a cone calorimeter was used at product scale (36 cm2) and at assembly scale (around 1300 cm2), experiments were performed under a Large Scale Heat Release calorimeter with a radiant burner. Since the wood decking sections have gaps, the influence of the orientation of the sections facing the burner was further investigated. At product scale, the wood sections ignite sooner than the thermoplastic sections whereas…
Publication Type: Journal Article
Face-to-face with scorching wildfire: potential toxicant exposure and the health risks of smoke for wildland firefighters at the wildland-urban interface
Year: 2023
As wildfire risks have elevated due to climate change, the health risks that toxicants from fire smoke pose to wildland firefighters have been exacerbated. Recently, the International Agency for Research on Cancer (IARC) has reclassified wildland firefighters’ occupational exposure as carcinogenic to humans (Group 1). Wildfire smoke contributes to an increased risk of cancer and cardiovascular disease, yet wildland firefighters have inadequate respiratory protection. The economic cost of wildland fires has risen concurrently, as illustrated by the appropriation of $45 billion for wildfire…
Publication Type: Journal Article
Consistent spatial scaling of high-severity wildfire can inform expected future patterns of burn severity
Year: 2023
Increasing wildfire activity in forests worldwide has driven urgency in understanding current and future fire regimes. Spatial patterns of area burned at high severity strongly shape forest resilience and constitute a key dimension of fire regimes, yet remain difficult to predict. To characterize the range of burn severity patterns expected within contemporary fire regimes, we quantified scaling relationships relating fire size to patterns of burn severity. Using 1615 fires occurring across the Northwest United States between 1985 and 2020, we evaluated scaling relationships within fire…
Publication Type: Journal Article
Wildland–Urban Interface: Definition and Physical Fire Risk Mitigation Measures, a Systematic Review
Year: 2023
Due to the associated fire risk, the wildland–urban interface (WUI) has drawn the attention of researchers and managers from a range of backgrounds. From a land management point of view, it is important to identify the WUI to determine areas to prioritise for fire risk prevention. It is also important to know the fire risk mitigation measures available to select the most appropriate for each specific context. In this systematic review, definitions of the WUI were investigated and physical mitigation measures for reducing the risk of fire were examined from a land management perspective. The…
Publication Type: Journal Article
Refuge-yeah or refuge-nah? Predicting locations of forest resistance and recruitment in a fiery world
Year: 2023
Climate warming, land use change, and altered fire regimes are driving ecological transformations that can have critical effects on Earth's biota. Fire refugia—locations that are burned less frequently or severely than their surroundings—may act as sites of relative stability during this period of rapid change by being resistant to fire and supporting post-fire recovery in adjacent areas. Because of their value to forest ecosystem persistence, there is an urgent need to anticipate where refugia are most likely to be found and where they align with environmental conditions that support post-…
Publication Type: Journal Article
Abrupt, climate-induced increase in wildfires in British Columbia since the mid-2000s
Year: 2023
In the province of British Columbia, Canada, four of the most severe wildfire seasons of the last century occurred in the past 7 years: 2017, 2018, 2021, and 2023. To investigate trends in wildfire activity and fire-conducive climate, we conducted an analysis of mapped wildfire perimeters and annual climate data for the period of 1919–2021. Results show that after a century-long decline, fire activity increased from 2005 onwards, coinciding with a sharp reversal in the wetting trend of the 20th century. Even as precipitation levels remain high, moisture deficits have increased due to rapid…
Publication Type: Journal Article
Does large area burned mean a bad fire year? Comparing contemporary wildfire years to historical fire regimes informs the restoration task in fire-dependent forests
Year: 2023
Wildfires and fire seasons are commonly rated largely on the simple metric of area burned (more hectares: bad). A seemingly paradoxical narrative frames large fire seasons as a symptom of a forest health problem (too much fire), while simultaneously stating that fire-dependent forests lack sufficient fire to maintain system resilience (too little fire). One key to resolving this paradox is placing contemporary fire years in the context of historical fire regimes, considering not only total fire area but also burn severity distributions. Historical regimes can also inform forest restoration…
Publication Type: Journal Article
Widespread exposure to altered fire regimes under 2 °C warming is projected to transform conifer forests of the Western United States
Year: 2023
Changes in wildfire frequency and severity are altering conifer forests and pose threats to biodiversity and natural climate solutions. Where and when feedbacks between vegetation and fire could mediate forest transformation are unresolved. Here, for the western United States, we used climate analogs to measure exposure to fire-regime change; quantified the direction and spatial distribution of changes in burn severity; and intersected exposure with fire-resistance trait data. We measured exposure as multivariate dissimilarities between contemporary distributions of fire frequency, burn…
Publication Type: Journal Article