Research Database
Displaying 1 - 9 of 9
Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity
Year: 2018
Fire frequency is changing globally and is projected to affect the global carbon cycle and climate1,2,3. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity4,5. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time…
Publication Type: Journal Article
Land surveys show regional variability of historical fire regimes and dry forest structure of the western United States
Year: 2018
An understanding of how historical fire and structure in dry forests (ponderosa pine, dry mixed conifer) varied across the western United States remains incomplete. Yet, fire strongly affects ecosystem services, and forest restoration programs are underway. We used General Land Office survey reconstructions from the late 1800s across 11 landscapes covering ~1.9 million ha in four states to analyze spatial variation in fire regimes and forest structure. We first synthesized the state of validation of our methods using 20 modern validations, 53 historical cross‐validations, and corroborating…
Publication Type: Journal Article
Prescribed fire regimes subtly alter ponderosa pine forest plant community structure
Year: 2018
Prescribed fire is an active management tool used to address wildfire hazard and ecological concerns associated with fire exclusion and suppression over the past century. Despite widespread application in the United States, there is considerable inconsistency and lack of information regarding the extent to which specific outcomes are achieved and under what prescribed fire regimes, particularly in regard to ecological goals related to plant community structure. We quantify differences and patterns in plant functional group abundance, species richness and diversity, and other key forest…
Publication Type: Journal Article
Influence of landscape structure, topography, and forest type on spatial variation in historical fire regimes, Central Oregon, USA
Year: 2018
Context In the interior Northwest, debate over restoring mixed-conifer forests after a century of fire exclusion is hampered by poor understanding of the pattern and causes of spatial variation in historical fire regimes. Objectives To identify the roles of topography, landscape structure, and forest type in driving spatial variation in historical fire regimes in mixed-conifer forests of central Oregon. Methods We used tree rings to reconstruct multicentury fire and forest histories at 105 plots over 10,393 ha. We classified fire regimes into four types and assessed whether they varied with…
Publication Type: Journal Article
Regional and local controls on historical fire regimes of dry forests and woodlands in the Rogue River Basin, Oregon, USA
Year: 2018
Fire regimes structure plant communities worldwide with regional and local factors, including anthropogenic fire management, influencing fire frequency and severity. Forests of the Rogue River Basin in Oregon, USA, are both productive and fire-prone due to ample winter precipitation and summer drought; yet management in this region is strongly influenced by forest practices that depend on fire exclusion. Regionally, climate change is increasing fire frequency, elevating the importance of understanding historically frequent-fire regimes. We use cross-dated fire-scars to characterize historical…
Publication Type: Journal Article
Wildfire risk reduction in the United States: Leadership staff perceptions of local fire department roles and responsibilities
Year: 2018
As wildland fires have had increasing negative impacts on a range of human values, in many parts of the United States (U.S.) and around the world, collaborative risk reduction efforts among agencies, homeowners, and fire departments are needed to improve wildfire safety and mitigate risk. Using interview data from 46 senior officers from local fire departments around the U.S., we examine how leadership staff view their departments’ roles and responsibilities in wildfire risk reduction. Overall, our findings indicate that local fire personnel are often performing a variety of mitigation tasks…
Publication Type: Journal Article
Where wildfires destroy buildings in the US relative to the wildland–urban interface and national fire outreach programs
Year: 2018
Over the past 30 years, the cost of wildfire suppression and homes lost to wildfire in the US have increased dramatically, driven in part by the expansion of the wildland–urban interface (WUI), where buildings and wildland vegetation meet. In response, the wildfire management community has devoted substantial effort to better understand where buildings and vegetation co-occur, and to establish outreach programs to reduce wildfire damage to homes. However, the extent to which the location of buildings affected by wildfire overlaps the WUI, and where and when outreach programs are established…
Publication Type: Journal Article
Human-related ignitions concurrent with high winds promote large wildfires across the USA
Year: 2018
Large wildfires (>40 ha) account for the majority of burned area across the contiguous United States (US) and appropriate substantial suppression resources. A variety of environmental and social factors influence wildfire growth and whether a fire overcomes initial attack efforts and becomes a large wildfire. However, little is known about how these factors differ between lightning-caused and human-caused wildfires. This study examines differences in temperature, vapour pressure deficit, fuel moisture and wind speed for large and small lightning- and human-caused wildfires during the…
Publication Type: Journal Article
Rapid growth of the US wildland-urban interface raises wildfire risk
Year: 2018
The wildland-urban interface (WUI) is the area where houses and wildland vegetation meet or intermingle, and where wildfire problems are most pronounced. Here we report that the WUI in the United States grew rapidly from 1990 to 2010 in terms of both number of new houses (from 30.8 to 43.4 million; 41% growth) and land area (from 581,000 to 770,000 km2; 33% growth), making it the fastest-growing land use type in the conterminous United States. The vast majority of new WUI areas were the result of new housing (97%), not related to an increase in wildland vegetation. Within the perimeter of…
Publication Type: Journal Article