Research Database
Displaying 41 - 60 of 172
Probabilistic Forecasting of Lightning Strikes over the Continental USA and Alaska: Model Development and Verification
Year: 2024
Lightning is responsible for the most area annually burned by wildfires in the extratropical region of the Northern Hemisphere. Hence, predicting the occurrence of wildfires requires reliable forecasting of the chance of cloud-to-ground lightning strikes during storms. Here, we describe the development and verification of a probabilistic lightning-strike algorithm running on a uniform 20 km grid over the continental USA and Alaska. This is the first and only high-resolution lightning forecasting model for North America derived from 29-year-long data records. The algorithm consists of a large…
Publication Type: Journal Article
Rethinking cost-share programs in consideration of economic equity: A case study of wildfire risk mitigation assistance for private landowners
Year: 2024
Public agencies and organizations often deliver financial assistance through cost sharing, in which recipients contribute some portion toward total costs. However, cost sharing might raise equity concerns if it reduces participation among populations with lower incomes. Here, we revisit a past study using a richer dataset (n=1,689) to assess whether stated income levels affect survey respondents' willingness to participate in a cost share program for vegetation reduction to mitigate wildfire risk in western Colorado. Results show that residents with lower incomes are less likely to…
Publication Type: Journal Article
Blending Indigenous and western science: Quantifying cultural burning impacts in Karuk Aboriginal Territory
Year: 2024
The combined effects of Indigenous fire stewardship and lightning ignitions shaped historical fire regimes, landscape patterns, and available resources in many ecosystems globally. The resulting fire regimes created complex fire–vegetation dynamics that were further influenced by biophysical setting, disturbance history, and climate. While there is increasing recognition of Indigenous fire stewardship among western scientists and managers, the extent and purpose of cultural burning is generally absent from the landscape–fire modeling literature and our understanding of ecosystem processes and…
Publication Type: Journal Article
Association of social vulnerability factors with power outage burden in Washington state: 2018–2021
Year: 2024
Major power outages have risen over the last two decades, largely due to more extreme weather conditions. However, there is a lack of knowledge on the distribution of power outages and its relationship to social vulnerability and co-occurring hazards. We examined the associations between localized outages and social vulnerability factors (demographic characteristics), controlling for environmental factors (weather), in Washington State between 2018–2021. We additionally analyzed the validity of PowerOutage.us data compared to federal datasets. The population included 27 counties served by 14…
Publication Type: Journal Article
A fire-use decision model to improve the United States’ wildfire management and support climate change adaptation
Year: 2024
The US faces multiple challenges in facilitating the safe, effective, and proactive use of fire as a landscape management tool. This intentional fire use exposes deeply ingrained communication challenges and distinct but overlapping strategies of prescribed fire, cultural burning, and managed wildfire. We argue for a new conceptual model that is organized around ecological conditions, capacity to act, and motivation to use fire and can integrate and expand intentional fire use as a tool. This result emerges from more considered collaboration and communication of values and needs to address…
Publication Type: Journal Article
Human driven climate change increased the likelihood of the 2023 record area burned in Canada
Year: 2024
In 2023, wildfires burned 15 million hectares in Canada, more than doubling the previous record. These wildfires caused a record number of evacuations, unprecedented air quality impacts across Canada and the northeastern United States, and substantial strain on fire management resources. Using climate models, we show that human-induced climate change significantly increased the likelihood of area burned at least as large as in 2023 across most of Canada, with more than two-fold increases in the east and southwest. The long fire season was more than five times as likely and the large areas…
Publication Type: Journal Article
Resource objective wildfire leveraged to restore old growth forest structure while stabilizing carbon stocks in the southwestern United States
Year: 2024
Wildfire futures and aboveground carbon (C) dynamics associated with forest restoration programs that integrate resource objective wildfire as part of a larger treatment strategy are not well understood. Using simulation modeling, we examined alternative forest and fuel management strategies on a 237,218-ha study area within a 778,000-ha landscape that is a high priority target for federal restoration programs. We simulated two wildfire management scenarios combined with three levels of conventional forest restoration treatments over 64 years using a detailed landscape disturbance and…
Publication Type: Journal Article
A systematic scoping review of the Social Vulnerability Index as applied to natural hazards
Year: 2024
Social vulnerability approaches seek to identify social, economic, and political drivers that exacerbate environmental risks, and inform adaptation strategies that redress uneven vulnerabilities. Social Vulnerability Indices (SVIs), one such approach, have exponentially increased in use since their inception in 2003. This paper contributes the most comprehensive and rigorous systematic assessment of SVIs to date, as applied in hazard and disaster contexts. We evaluate how 246 peer-reviewed articles, published online between 2003 and 2021, conceptualized, constructed, and applied SVIs across…
Publication Type: Journal Article
Using focus groups for knowledge sharing: Tracking emerging pandemic impacts on USFS wildland fire operations
Year: 2024
In early 2020 the US Forest Service (USFS) recognized the need to gather real-time information from its wildland fire management personnel about their challenges and adaptations during the unfolding COVID-19 pandemic. The USFS conducted 194 virtual focus groups to address these concerns, over 32 weeks from March 2020 to October 2020. This management effort provided an opportunity for an innovative practice-based research study. Here, we outline a novel methodological approach (weekly, iterative focus groups, with two-way communication between USFS staff and leadership), which culminated in a…
Publication Type: Journal Article
Predicting daily firefighting personnel deployment trends in the western United States
Year: 2024
Projected increases in wildfire frequency, size, and severity may further stress already scarce firefighting resources in the western United States that are in high demand. Machine learning is a promising field with the ability to model firefighting resource usage without compromising dataset size or complexity. In this study, the Categorical Boosting (CatBoost) model was used with historical (2012-2020) wildfire data to train three models that calculate predicted daily counts of 1) total assigned personnel (total personnel), 2) assigned personnel that are at the fire (ground personnel), and…
Publication Type: Journal Article
Avoided wildfire impact modeling with counterfactual probabilistic analysis
Year: 2023
Assessing the effectiveness and measuring the performance of fuel treatments and other wildfire risk mitigation efforts are challenging endeavors. Perhaps the most complicated is quantifying avoided impacts. In this study, we show how probabilistic counterfactual analysis can help with performance evaluation. We borrow insights from the disaster risk mitigation and climate event attribution literature to illustrate a counterfactual framework and provide examples using ensemble wildfire simulations. Specifically, we reanalyze previously published fire simulation data from fire-prone landscapes…
Publication Type: Journal Article
An aridity threshold model of fire sizes and annual area burned in extensively forested ecoregions of the western USA
Year: 2023
Wildfire occurrence varies among regions and through time due to the long-term impacts of climate on fuel structure and short-term impacts on fuel flammability. Identifying the climatic conditions that trigger extensive fire years at regional scales can enable development of area burned models that are both spatially and temporally robust, which is crucial for understanding the impacts of past and future climate change. We identified region-specific thresholds in fire-season aridity that distinguish years with limited, moderate, and extensive area burned for 11 extensively forested ecoregions…
Publication Type: Journal Article
Social drivers of vulnerability to wildfire disasters: A review of the literature
Year: 2023
The increase of wildfire disasters globally has highlighted the need to understand and mitigate human vulnerability to wildfire. In response, there has been a substantial uptick in efforts to characterize and quantify wildfire vulnerability. Such efforts have largely focused on quantifying potential wildfire exposure and frequently overlooked the individual and community vulnerability to wildfire. Here, we review the emergent literature on social vulnerability to wildfire by synthesizing factors related to exposure, sensitivity, and adaptive capacity that contribute to a population’s or…
Publication Type: Journal Article
Long-term mortality burden trends attributed to black carbon and PM2·5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study
Year: 2023
Background
Long-term improvements in air quality and public health in the continental USA were disrupted over the past decade by increased fire emissions that potentially offset the decrease in anthropogenic emissions. This study aims to estimate trends in black carbon and PM2·5 concentrations and their attributable mortality burden across the USA.
Methods
In this study, we derived daily concentrations of PM2·5 and its highly toxic black carbon component at a 1-km resolution in the USA from 2000 to 2020 via deep learning that integrated big data from satellites, models, and surface…
Publication Type: Journal Article
Exploring and Testing Wildfire Risk Decision-Making in the Face of Deep Uncertainty
Year: 2023
We integrated a mechanistic wildfire simulation system with an agent-based landscape change model to investigate the feedbacks among climate change, population growth, development, landowner decision-making, vegetative succession, and wildfire. Our goal was to develop an adaptable simulation platform for anticipating risk-mitigation tradeoffs in a fire-prone wildland–urban interface (WUI) facing conditions outside the bounds of experience. We describe how five social and ecological system (SES) submodels interact over time and space to generate highly variable alternative futures even within…
Publication Type: Journal Article
Social Vulnerability in USCommunities Affected by WildfireSmoke, 2011 to 2021
Year: 2023
Objectives. To describe demographic and social characteristics of US communities exposed to wildfire smoke.
Methods. Using satellite-collected data on wildfire smoke with the locations of population centers in the coterminous United States, we identified communities potentially exposed to light-, medium-, and heavy-density smoke plumes for each day from 2011 to 2021. We linked days of exposure to smoke in each category of smoke plume density with 2010 US Census data and community characteristics from the Centers for Disease Control and Prevention’s Social Vulnerability Index to describe…
Publication Type: Journal Article
Performance of Fire Danger Indices and Their Utility in Predicting Future Wildfire Danger Over the Conterminous United States
Year: 2023
Predicting current and future wildfire frequency and size is central to wildfire control and management. Multiple fire danger indices (FDIs) that incorporate weather and fuel conditions have been developed and utilized to support wildfire predictions and risk assessment. However, the scale-dependent performance of individual FDIs remains poorly understood, which leads to large uncertainty in the estimated fire sizes under climate change. Here, we calculate four commonly used FDIs over the conterminous United States using high-resolution (4 km) climate and fuel data sets for the 1984–2019…
Publication Type: Journal Article
DUET - Distribution of Understory using Elliptical Transport: A mechanistic model of leaf litter and herbaceous spatial distribution based on tree canopy structure
Year: 2023
Heterogeneity in surface fuels produced by overstory trees and understory vegetation is a major driver of fire behavior and ecosystem dynamics. Previous attempts at predicting tree leaf and needle litter accumulation over time have been constrained in scope to probabilistic models that consider a limited number of key factors influencing tree litter dispersal patterns and decomposition processes. We present a mechanistic model for estimating variation in surface fuels called the Distribution of Understory using Elliptical Transport (DUET). DUET uses a pre-generated voxelated canopy array and…
Publication Type: Journal Article
Social vulnerability of the people exposed to wildfires in U.S. West Coast states
Year: 2023
Understanding of the vulnerability of populations exposed to wildfires is limited. We used an index from the U.S. Centers for Disease Control and Prevention to assess the social vulnerability of populations exposed to wildfire from 2000–2021 in California, Oregon, and Washington, which accounted for 90% of exposures in the western United States. The number of people exposed to fire from 2000–2010 to 2011–2021 increased substantially, with the largest increase, nearly 250%, for people with high social vulnerability. In Oregon and Washington, a higher percentage of exposed people were highly…
Publication Type: Journal Article
Atmospheric turbulence and wildland fires: a review
Year: 2023
The behaviour of wildland fires and the dispersion of smoke from those fires can be strongly influenced by atmospheric turbulent flow. The science to support that assertion has developed and evolved over the past 100+ years, with contributions from laboratory and field observations, as well as modelling experiments. This paper provides a synthesis of the key laboratory- and field-based observational studies focused on wildland fire and atmospheric turbulence connections that have been conducted from the early 1900s through 2021. Included in the synthesis are reports of anecdotal…
Publication Type: Journal Article