Research Database
Displaying 1 - 20 of 105
Lightning ignition efficiency in Canadian forests
Year: 2025
Background: Lightning-caused fires have a driving influence on Canadian forests, being responsible for approximately half of all wildfires and 90% of the area burned. We created a climatology (2000–2020) of daily lightning efficiency (i.e., the ratio of cloud-to-ground lightning flashes to lightning-caused wildfires that occurred) over the meteorological summer for four ecozones and a subset of British Columbia (BC) ecoprovinces. We estimated lightning efficiency using data from the Canadian Lightning Detection Network and the Canadian National Fire Database. We used the ERA5…
Publication Type: Journal Article
Wildfire and forest treatments mitigate–but cannot forestall–climate-driven changes in streamflow regimes in a western US mountain landscape
Year: 2025
Warming temperatures and increasingly variable precipitation patterns are reducing winter snowpack and critical late-season streamflows. Here, we used two models (LANDIS-II and DHSVM) in linked simulations to evaluate the effects of wildfire and forest management scenarios on future snowpack and streamflow dynamics. We characterized the biophysical attributes of the areas with the greatest potential for treatments to improve hydrologic functioning and we examined projected trends in flow regimes over the 21st century. We found that, despite a projected increase in total annual flows, there…
Publication Type: Journal Article
Influence of Time‐Averaging of Climate Data on Estimates of Atmospheric Vapor Pressure Deficit and Inferred Relationships With Wildfire Area in the Western United States
Year: 2025
Vapor pressure deficit (VPD) is a driver of evaporative demand and correlates strongly with wildfire extent in the western United States (WUS). Vapor pressure deficit is the difference between saturation vapor pressure (es) and actual vapor pressure (ea). Because es increases nonlinearly with temperature, calculations of time‐averaged VPD vary depending on the frequency of temperature measurements and how ea is calculated, potentially limiting our understanding of fire‐climate relationships. We calculate eight versions of monthly VPD across the WUS and assess their differences. Monthly VPDs…
Publication Type: Journal Article
Wildfires drive multi-year water quality degradation over the western United States
Year: 2025
Wildfires can dramatically alter water quality, resulting in severe implications for human and freshwater systems. However, regional-scale assessments of these impacts are often limited by data scarcity. Here, we unify observations from 1984–2021 in 245 burned watersheds across the western United States, comparing post-fire signals to baseline levels from 293 unburned basins. Organic carbon and phosphorus exhibit significantly elevated levels (p ≤ 0.05) in the first 1–5 years post-fire, while nitrogen and sediment show significant increases up to 8 years post-fire. During peak post-…
Publication Type: Journal Article
A Quantitative Analysis of Firefighter Availability and Prescribed Burning in the Okanogan–Wenatchee National Forest
Year: 2025
Wildfire activity in the western United States has been on the rise since the mid-1980s, with longer, higher-risk fire seasons projected for the future. Prescribed burning mitigates the risk of extreme wildfire events, but such treatments are currently underutilized. Fire managers have cited lack of firefighter availability as a key barrier to prescribed burning. We use both principal component analysis (PCA) and logistic regression modeling methodologies to investigate whether or not (and if yes, under what conditions) personnel shortages on a given day are associated with lower odds of a…
Publication Type: Journal Article
Increasing Hydroclimatic Whiplash Can Amplify Wildfire Risk in a Warming Climate
Year: 2025
On January 7 and 8, 2025, a series of wind-driven wildfires occurred in Los Angeles County in Southern California. Two of these fires ignited in dense woody chaparral shrubland and immediately burned into adjacent populated areas–the Palisades Fire on the coastal slopes of the Santa Monica Mountains and the Eaton fire in the foothills of the San Gabriel Mountains. Both fires ultimately eclipsed the traditionally-defined “wildland-urban interface” boundaries by burning structure-to-structure as an urban conflagration. The scope of the devastation is staggering; at the time of writing, the…
Publication Type: Report
Quantifying Western US tree carbon stocks and sequestration from fires
Year: 2025
Background: Forest ecosystems function as the largest terrestrial carbon sink globally. In the Western US, fires play a crucial role in modifying forest carbon storage, sequestration capacity, and the transfer of carbon from live to dead carbon pools. We utilized remeasurements of more than 700,000 trees from 24,000 locations from the US Department of Agriculture Forest Service’s Forest Inventory and Analysis program (FIA) and incorporated supplementary information on wildfires from the Monitoring Trends in Burn Severity dataset. These datasets allowed us to develop models that examined the…
Publication Type: Journal Article
Decreasing frequency of low and moderate fire weather days may be contributing to large wildfire occurrence in the northern Sierra Nevada
Year: 2025
Previous analyses identified large-scale climatic patterns contributing to greater fuel aridity as drivers of recent dramatic increases in wildfire activity throughout California. This study revisits an approach to investigate more local fire weather patterns in the northern Sierra Nevada; a region within California that has experienced exceptionally high wildfire activity recently. The annual percentages of fire season days above 90th and 95th percentile Energy Release Component (ERC) values were very low prior to 1994 (Fig. 3). Since 1994, years with noticeable percentages of exceedances (…
Publication Type: Journal Article
Going slow to go fast: landscape designs to achieve multiple benefits
Year: 2025
Introduction: Growing concerns about fire across the western United States, and commensurate emphasis on treating expansive areas over the next 2 decades, have created a need to develop tools for managers to assess management benefits and impacts across spatial scales. We modeled outcomes associated with two common forest management objectives: fire risk reduction (fire), and enhancing multiple resource benefits (ecosystem resilience).Method: We evaluated the compatibility of these two objectives across ca. 1-million ha in the central Sierra Nevada,…
Publication Type: Journal Article
Mobile radar provides insights into hydrologic responses in burn areas
Year: 2025
Background. Wildfires often occur in mountainous terrain, regions that pose substantial challenges to operational meteorological and hydrologic observing networks. Aims. A mobile, postfire hydrometeorological observatory comprising remote-sensing and in situ instrumentation was developed and deployed in a burnt area to provide unique insights into rainfall-induced post-fire hazards. Methods. Mobile radar-based rainfall estimates were produced throughout the burn area at 75-m resolution and compared with rain gauge accumulations and basin response variables. Key results. The mobile radar was…
Publication Type: Journal Article
Hydrometeorology-wildfire relationship analysis based on a wildfire bivariate probabilistic framework in different ecoregions of the continental United States
Year: 2024
Wildfires are a natural part of the ecosystem in the U.S.. It is vital to classify wildfires using a comprehensive approach that simultaneously considers wildfire activity (the number of wildfires) and burned area. On this basis, the influence of hydrometeorological variables on wildfires can be further analyzed. Therefore, this study first classified wildfire types using a wildfire bivariate probability framework. Then, by considering six hydrometeorological variables, the dominant hydrometeorological variables for different wildfire types in 17 ecoregions of the United States were…
Publication Type: Journal Article
Carbon, climate, and natural disturbance: a review of mechanisms, challenges, and tools for understanding forest carbon stability in an uncertain future
Year: 2024
In this review, we discuss current research on forest carbon risk from natural disturbance under climate change for the United States, with emphasis on advancements in analytical mapping and modeling tools that have potential to drive research for managing future long-term stability of forest carbon. As a natural mechanism for carbon storage, forests are a critical component of meeting climate mitigation strategies designed to combat anthropogenic emissions. Forests consist of long-lived organisms (trees) that can store carbon for centuries or more. However, trees have finite lifespans, and…
Publication Type: Journal Article
Comparing ground-based lightning detection networks near wildfire points-of-origin
Year: 2024
Lightning detection and attribution to wildfire ignitions is a critical component of fire management worldwide to both reduce hazards of wildfire to values-at-risk and to enhance the potential for wildland fire to provide resource benefits in fire-adapted ecosystems. We compared two operational ground-based lightning detection networks used by fire managers to identify cloud-to-ground strokes within operationally-relevant distances (1.6 km) of the origins of 4408 western United States lightning-ignited wildfires spanning May–September 2020. Applying two sets of constraints–varying…
Publication Type: Journal Article
Enhanced future vegetation growth with elevated carbon dioxide concentrations could increase fire activity
Year: 2024
Many regions of the planet have experienced an increase in fire activity in recent decades. Although such increases are consistent with warming and drying under continued climate change, the driving mechanisms remain uncertain. Here, we investigate the effects of increasing atmospheric carbon dioxide concentrations on future fire activity using seven Earth system models. Centered on the time of carbon dioxide doubling, the multi-model mean percent change in fire carbon emissions is 66.4 ± 38.8% (versus 1850 carbon dioxide concentrations, under fixed 1850 land-use conditions). A substantial…
Publication Type: Journal Article
Moderating effects of past wildfire on reburn severity depend on climate and initial severity in Western US forests
Year: 2024
Rising global fire activity is increasing the prevalence of repeated short-interval burning (reburning) in forests worldwide. In forests that historically experienced frequent-fire regimes, high-severity fire exacerbates the severity of subsequent fires by increasing prevalence of shrubs and/or by creating drier understory conditions. Low- to moderate-severity fire, in contrast, can moderate future fire behavior by reducing fuel loads. The extent to which previous fires moderate future fire severity will powerfully affect fire-prone forest ecosystem trajectories over the next century. Further…
Publication Type: Journal Article
Role of biochar made from low-value woody forest residues in ecological sustainability and carbon neutrality
Year: 2024
Forest management activities that are intended to improve forest health and reduce the risk of catastrophic fire generate low-value woody biomass, which is often piled and open-burned for disposal. This leads to greenhouse gas emissions, long-lasting burn scars, air pollution, and increased risk of escaped prescribed fire. Converting low-value biomass into biochar can be a promising avenue for advancing forest sustainability and carbon neutrality. Biochar can be produced either in a centralized facility or by using place-based techniques that mitigate greenhouse gas emissions and generate a…
Publication Type: Journal
Near-term fire weather forecasting in the Pacific Northwest using 500-hPa map types
Year: 2024
BackgroundNear-term forecasts of fire danger based on predicted surface weather and fuel dryness are widely used to support the decisions of wildfire managers. The incorporation of synoptic-scale upper-air patterns into predictive models may provide additional value in operational forecasting.AimsIn this study, we assess the impact of synoptic-scale upper-air patterns on the occurrence of large wildfires and widespread fire outbreaks in the US Pacific Northwest. Additionally, we examine how discrete upper-air map types can augment subregional models of…
Publication Type: Journal Article
Human driven climate change increased the likelihood of the 2023 record area burned in Canada
Year: 2024
In 2023, wildfires burned 15 million hectares in Canada, more than doubling the previous record. These wildfires caused a record number of evacuations, unprecedented air quality impacts across Canada and the northeastern United States, and substantial strain on fire management resources. Using climate models, we show that human-induced climate change significantly increased the likelihood of area burned at least as large as in 2023 across most of Canada, with more than two-fold increases in the east and southwest. The long fire season was more than five times as likely and the large areas…
Publication Type: Journal Article
Forest thinning and prescribed burning treatments reduce wildfire severity and buffer the impacts of severe fire weather
Year: 2024
BackgroundThe capacity of forest fuel treatments to moderate the behavior and severity of subsequent wildfires depends on weather and fuel conditions at the time of burning. However, in-depth evaluations of how treatments perform are limited because encounters between wildfires and areas with extensive pre-fire data are rare. Here, we took advantage of a 1200-ha randomized and replicated experiment that burned almost entirely in a subsequent wildfire under a wide range of weather conditions. We compared the impacts of four fuel treatments on fire severity, including two thin-only, a thin-burn…
Publication Type: Journal Article
The Interannual Variability of Global Burned Area Is Mostly Explained by Climatic Drivers
Year: 2024
Better understanding how fires respond to climate variability is an issue of current interest in light of ongoing climate change. However, evaluating the global-scale temporal variability of fires in response to climate presents a challenge due to the intricate processes at play and the limitation of fire data. Here, we investigate the links between year-to-year variability of burned area (BA) and climate using BA data, the Fire Weather Index (FWI), and the Standardized Precipitation Evapotranspiration Index (SPEI) from 2001 to 2021 at ecoregion scales. Our results reveal complex spatial…
Publication Type: Journal Article