Research Database
Displaying 21 - 40 of 78
Hydrological and Meteorological Controls on Large Wildfire Ignition and Burned Area in Northern California during 2017–2020
Year: 2023
This study examined the hydrological/meteorological controls on large wildfires > 10,000 acres (40.5 km2) during 2017–2020 in Northern California at spatial and temporal scales of the target wildfires’ occurrence or growth. This study used the following simple indices for analysis: Moisture Deficit Index (MDI) computed by dividing vapor pressure deficit by soil moisture, MDIWIND computed by multiplying MDI by horizontal wind speed, and MDIGUST computed by multiplying MDI by wind gust speed. The ignition location MDIWIND and MDIGUST showed larger values on the ignition date in fire-years…
Publication Type: Journal Article
Dry Live Fuels Increase the Likelihood of Lightning-Caused Fires
Year: 2023
Live fuel moisture content (LFMC) is a key determinant of landscape ignition potential, but quantitative estimates of its effects on wildfire are lacking. We present a causal inference framework to isolate the effect of LFMC from other drivers like fuel type, fuel amount, and meteorology. We show that in California when LFMC is below a critical flammability threshold, the likelihood of fires is 1.8 times as high statewide (2.25% vs. 1.27%) and 2.5 times as high in shrubs, compared to when LFMC is greater than the threshold. This risk ratio is >2 times when LFMC is 10% less than the…
Publication Type: Journal Article
Extreme Winds Alter Influence of Fuels and Topography on Megafire Burn Severity in Seasonal Temperate Rainforests under Record Fuel Aridity
Year: 2022
Nearly 0.8 million hectares of land were burned in the North American Pacific Northwest (PNW) over two weeks under record-breaking fuel aridity and winds during the extraordinary 2020 fire season, representing a rare example of megafires in forests west of the Cascade Mountains. We quantified the relative influence of weather, vegetation, and topography on patterns of high burn severity (>75% tree mortality) among five synchronous megafires in the western Cascade Mountains. Despite the conventional wisdom in climate-limited fire regimes that regional drivers (e.g., extreme aridity, and…
Publication Type: Journal Article
Summer and Fall Extreme Fire Weather Projected to Occur More Often and Affect a Growing Portion of California throughout the 21st Century
Year: 2022
Annual burned area has increased in California over the past three decades as a result of rising temperatures and a greater atmospheric demand for moisture, a trend that is projected to continue throughout the 21st century as a result of climate change. Here, we implement a bias-correction and statistical downscaling technique to obtain high resolution, daily meteorological conditions for input into two fire weather indices: vapor pressure deficit (VPD) and the Canadian Fire Weather Index System (FWI). We focus our analysis on 10 ecoregions that together account for the diverse range of…
Publication Type: Journal Article
Episodic occurrence of favourable weather constrains recovery of a cold desert shrubland after fire
Year: 2021
1. Key to the long-term resilience of dryland ecosystems is the recovery of foundation plant species following disturbance. In ecosystems with high interannual weather variability, understanding the influence of short-term environmental conditions on establishment of foundation species is essential for identifying vulnerable landscapes and developing restoration strategies. We asked how annual environmental conditions affect post-fire establishment of Artemisia tridentata, a shrub species that dominates landscapes across much of the western United States, and evaluated the influence of…
Publication Type: Journal Article
U.S. Geological Survey Wildland Fire Science Strategic Plan, 2021-26
Year: 2021
The USGS Wildland Fire Science Strategic Plan (hereafter, Strategic Plan) was developed by USGS fire scientists and executive leadership, and was informed by discussions with external stakeholders. The Strategic Plan is aligned with the needs of the fire science stakeholder community—fire, land, natural resource, and emergency managers from Federal, State, Tribal, and community organizations and members of the broad scientific community. The Strategic Plan also defines critical, core fire science capabilities for understanding fire-related and fire-responsive earth system processes and…
Publication Type: Report
Existing Improvements in Simulation of Fire–Wind Interaction and Its Effects on Structures
Year: 2021
This work provides a detailed overview of existing investigations into the fire–wind interaction phenomena. Specifically, it considers: the fanning effect of wind, wind direction and slope angle, and the impact of wind on fire modelling, and the relevant analysis (numerical and experimental) techniques are evaluated. Recently, the impact of fire on buildings has been widely analysed. Most studies paid attention to fire damage evaluation of structures as well as structure fire safety engineering, while the disturbance interactions that influence structures have been neglected in prior studies…
Publication Type: Journal Article
Contrasting the role of human- and lightning-caused wildfires on future fire regimes on a Central Oregon landscape
Year: 2021
Climate change is expected to increase fire activity in many regions of the globe, but the relative role of human vs. lightning-caused ignitions on future fire regimes is unclear. We developed statistical models that account for the spatiotemporal ignition patterns by cause in the eastern slopes of the Cascades in Oregon, USA. Projected changes in energy release component from a suite of climate models were used with our model to quantify changes in frequency and extent of human and lightning-caused fires and record-breaking events based on sizes of individual fires between contemporary (2006…
Publication Type: Journal Article
Assessment of Early Implementation of the US Forest Service’s Shared Stewardship Strategy
Year: 2021
In 2019, Colorado State University entered into achallenge cost-share agreement with USFS Stateand Private Forestry to conduct independent researchon the implementation and developmentof Shared Stewardship efforts. The first phase ofour work took place in 2020, when we interviewedagency and state employees and representatives ofpartner organizations in states in the West that hadsigned a memorandum of understanding (MOU)with the USFS to formally pursue Shared Stewardship.Our primary goal was to understand themain factors affecting the early stages of SharedStewardship efforts across these…
Publication Type: Report
Weather, Risk, and Resource Orders on Large Wildland Fires in the Western US
Year: 2020
Our results suggest that weather is a primary driver of resource orders over the course of extended attack efforts on large fires. Incident Management Teams (IMTs) synthesize information about weather, fuels, and order resources based on expected fire growth rather than simply reacting to observed fire growth. Background and Objectives: Weather conditions are a well-known determinant of fire behavior and are likely to become more erratic under climate change. Yet, there is little empirical evidence demonstrating how IMTs respond to observed or expected weather conditions. An understanding of…
Publication Type: Journal Article
Severe Fire Danger Index: A Forecastable Metric to Inform Firefighter and Community Wildfire Risk Management
Year: 2019
Despite major advances in numerical weather prediction, few resources exist to forecast wildland fire danger conditions to support operational fire management decisions and community early-warning systems. Here we present the development and evaluation of a spatial fire danger index that can be used to assess historical events, forecast extreme fire danger, and communicate those conditions to both firefighters and the public. It uses two United States National Fire Danger Rating System indices that are related to fire intensity and spread potential. These indices are normalized, combined, and…
Publication Type: Journal Article
Social Vulnerability and Wildfire in the Wildland-Urban Interface: Literature synthesis
Year: 2019
The overall objective of this paper is to clarify areas of debate, clearly define and contrast disparate approaches, and synthesize findings that may help address vulnerability to wildfires and other natural hazards. While land managers and fire personnel might find it pertinent to approach biophysical and social issues separately, addressing both aspects of wildfire hazard can be productive for minimizing risk and empowering communities, neighborhoods, and households to prepare and recover from wildfire events. We aim to provide a practical grasp of social vulnerability research as it…
Publication Type: Report
Human-related ignitions concurrent with high winds promote large wildfires across the USA
Year: 2018
Large wildfires (>40 ha) account for the majority of burned area across the contiguous United States (US) and appropriate substantial suppression resources. A variety of environmental and social factors influence wildfire growth and whether a fire overcomes initial attack efforts and becomes a large wildfire. However, little is known about how these factors differ between lightning-caused and human-caused wildfires. This study examines differences in temperature, vapour pressure deficit, fuel moisture and wind speed for large and small lightning- and human-caused wildfires during the…
Publication Type: Journal Article
High-severity fire: Evaluating its key drivers and mapping its probability across western US forests
Year: 2018
Wildland fire is a critical process in forests of the western United States (US). Variation in fire behavior, which is heavily influenced by fuel loading, terrain, weather, and vegetation type, leads to heterogeneity in fire severity across landscapes. The relative influence of these factors in driving fire severity, however, is poorly understood. Here, we explore the drivers of high-severity fire for forested ecoregions in the western US over the period 2002–2015. Fire severity was quantified using a satellite-inferred index of severity, the relativized burn ratio. For each ecoregion, we…
Publication Type: Journal Article
Evidence of fuels management and fire weather influencing fire severity in an extreme fire event
Year: 2017
Following changes in vegetation structure and pattern, along with a changing climate, large wildfire incidence has increased in forests throughout the western U.S. Given this increase there is great interest in whether fuels treatments and previous wildfire can alter fire severity patterns in large wildfires. We assessed the relative influence of previous fuels treatments (including wildfire), fire weather, vegetation and water balance on fire severity in the Rim Fire of 2013. We did this at three different spatial scales to investigate whether the influences on fire severity changed across…
Publication Type: Journal Article
Towards improving wildland firefighter situational awareness through daily fire behaviour risk assessments in the US Northern Rockies and Northern Great Basin
Year: 2017
Wildland firefighters must assess potential fire behaviour in order to develop appropriate strategies and tactics that will safely meet objectives. Fire danger indices integrate surface weather conditions to quantify potential variations in fire spread rates and intensities and therefore should closely relate to observed fire behaviour. These indices could better inform fire management decisions if they were linked directly to observed fire behaviour. Here, we present a simple framework for relating fire danger indices to observed categorical wildland fire behaviour. Ordinal logistic…
Publication Type: Journal Article
Prescribed Fire in Grassland Butterfly Habitat: Targeting Weather and Fuel Conditions to Reduce Soil Temperatures and Burn Severity
Year: 2017
Prescribed burning is a primary tool for habitat restoration and management in fire-adapted grasslands. Concerns about detrimental effects of burning on butterfly populations, however, can inhibit implementation of treatments. Burning in cool and humid conditions is likely to result in lowered soil temperatures and to produce patches of low burn severity, both of which would enhance survival of butterfly larvae at or near the soil surface. In this study, we burned 20 experimental plots in South Puget Sound, Washington, USA, prairies across a range of weather and fuel conditions to address the…
Publication Type: Journal Article
The ICO Approach to Quantifying and Restoring Forest Spatial Pattern: Implementation Guide. Version 3.0
Year: 2016
This document is intended as a “How To” guide for managers and stakeholders wishing to implement the Individual, Clumps, and Openings (ICO) method for silvicultural prescriptions and/or monitoring. Since its release in 2013, ICO has undergone a lot of development and improvement. In the third version of the guide we have included these important advancements:-Reference data from 4 regions is now available to assist in developing targets for clump sizes.-We developed an Android app to make marking and implementation easier. See section VII (page 38) for link to download.-Innovative…
Publication Type: Report
Oregon's State Wood Energy Team: A Grant Program Review
Year: 2016
Oregon's State Wood Energy Team (SWET) is a state-level network supported by the United States Forest Service and led by Oregon Department of Forestry. The purpose of the SWET is to bring together experts in biomass energy to support the successful development and implemen-tation of wood energy systems and businesses. One of the Oregon SWET’S activities is a small grant program for project feasibility, engineering, and construction activities. Six grants were awarded in 2013-2015, totaling $204,700. Oregon State Uni-versity conducted an assessment of this program at the SWET’s request in…
Publication Type: Report
Administrative and Judicial Review of NEPA Decisions: Risk Factors and Risk Minimizing Strategies for the Forest Service
Year: 2016
Changes in land use and management practices throughout the past century–in addition to drought and other stressors exacerbated by climate change–have degraded the nation’s forests and led to overgrowth and accumulation of hazardous fuels (GAO 2015). Because of these fuels, some forests now see high-severity fires that threaten communities as well as important natural and cultural resources. Restoring desired vegetation conditions, which can often be accomplished through mechanical thinning or prescribed burning, are central objectives of restoration and fuel reduction projects carried out by…
Publication Type: Report