Research Database
Displaying 21 - 40 of 61
Association of social vulnerability factors with power outage burden in Washington state: 2018–2021
Year: 2024
Major power outages have risen over the last two decades, largely due to more extreme weather conditions. However, there is a lack of knowledge on the distribution of power outages and its relationship to social vulnerability and co-occurring hazards. We examined the associations between localized outages and social vulnerability factors (demographic characteristics), controlling for environmental factors (weather), in Washington State between 2018–2021. We additionally analyzed the validity of PowerOutage.us data compared to federal datasets. The population included 27 counties served by 14…
Publication Type: Journal Article
Trends in prescribed fire weather windows from 2000 to 2022 in California
Year: 2024
As increasing wildfire activity puts pressure on wildland fire suppression resources both nationally and within the state of California, further development of programs and infrastructure that emphasize preventative fuels treatments, e.g. prescribed burning, is critical for mitigating the impacts of wildfire at large spatial scales. Among many factors that limit the use of prescribed fire, weather and fuel moisture conditions are among the most critical. We analyzed a 2-km gridded hourly surface weather dataset over a 23-yr period to explore the relationship between climatological trends and…
Publication Type: Journal Article
Characterizing post-fire delayed tree mortality with remote sensing: sizing up the elephant in the room
Year: 2024
BackgroundDespite recent advances in understanding the drivers of tree-level delayed mortality, we lack a method for mapping delayed mortality at landscape and regional scales. Consequently, the extent, magnitude, and effects of delayed mortality on post-fire landscape patterns of burn severity are unknown. We introduce a remote sensing approach for mapping delayed mortality based on post-fire decline in the normalized burn ratio (NBR). NBR decline is defined as the change in NBR between the first post-fire measurement and the minimum NBR value up to 5 years post-fire for each pixel…
Publication Type: Journal Article
Lightning-Ignited Wildfires in the Western United States: Ignition Precipitation and Associated Environmental Conditions
Year: 2023
Cloud-to-ground lightning with minimal rainfall (“dry” lightning) is a major wildfire ignition source in the western United States (WUS). Although dry lightning is commonly defined as occurring with <2.5 mm of daily-accumulated precipitation, a rigorous quantification of precipitation amounts concurrent with lightning-ignited wildfires (LIWs) is lacking. We combine wildfire, lightning and precipitation data sets to quantify these ignition precipitation amounts across ecoprovinces of the WUS. The median precipitation for all LIWs is 2.8 mm but varies with vegetation and fire characteristics…
Publication Type: Journal Article
Fire refugia are robust across Western US forested ecoregions, 1986–2021
Year: 2023
In the Western US, area burned and fire size have increased due to the influences of climate change, long-term fire suppression leading to higher fuel loads, and increased ignitions. However, evidence is less conclusive about increases in fire severity within these growing wildfire extents. Fires burn unevenly across landscapes, leaving islands of unburned or less impacted areas, known as fire refugia. Fire refugia may enhance post-fire ecosystem function and biodiversity by providing refuge to species and functioning as seed sources after fires. In this study, we evaluated whether the…
Publication Type: Journal Article
Hydrological and Meteorological Controls on Large Wildfire Ignition and Burned Area in Northern California during 2017–2020
Year: 2023
This study examined the hydrological/meteorological controls on large wildfires > 10,000 acres (40.5 km2) during 2017–2020 in Northern California at spatial and temporal scales of the target wildfires’ occurrence or growth. This study used the following simple indices for analysis: Moisture Deficit Index (MDI) computed by dividing vapor pressure deficit by soil moisture, MDIWIND computed by multiplying MDI by horizontal wind speed, and MDIGUST computed by multiplying MDI by wind gust speed. The ignition location MDIWIND and MDIGUST showed larger values on the ignition date in fire-years…
Publication Type: Journal Article
Landscape‑scale fuel treatment effectiveness: lessons learned from wildland fire case studies in forests of the western United States and Great Lakes region
Year: 2023
Background Maximizing the effectiveness of fuel treatments at landscape scales is a key research and management need given the inability to treat all areas at risk from wildfire. We synthesized information from case studies that documented the influence of fuel treatments on wildfire events. We used a systematic review to identify relevant case studies and extracted information through a series of targeted questions to summarize experiential knowledge of landscape fuel treatment effectiveness. Within a larger literature search, we identified 18 case study reports that included (1) manager…
Publication Type: Journal Article
Refuge-yeah or refuge-nah? Predicting locations of forest resistance and recruitment in a fiery world
Year: 2023
Climate warming, land use change, and altered fire regimes are driving ecological transformations that can have critical effects on Earth's biota. Fire refugia—locations that are burned less frequently or severely than their surroundings—may act as sites of relative stability during this period of rapid change by being resistant to fire and supporting post-fire recovery in adjacent areas. Because of their value to forest ecosystem persistence, there is an urgent need to anticipate where refugia are most likely to be found and where they align with environmental conditions that support post-…
Publication Type: Journal Article
Smoke-weather interaction affects extreme wildfires in diverse coastal regions
Year: 2023
Extreme wildfires threaten human lives, air quality, and ecosystems. Meteorology plays a vital role in wildfire behaviors, and the links between wildfires and climate have been widely studied. However, it is not fully clear how fire-weather feedback affects short-term wildfire variability, which undermines our ability to mitigate fire disasters. Here, we show the primacy of synoptic- scale feedback in driving extreme fires in Mediterranean and monsoon climate regimes in the West Coast of the United States and Southeastern Asia. We found that radiative effects of smoke aerosols can modify near…
Publication Type: Journal Article
Dry Live Fuels Increase the Likelihood of Lightning-Caused Fires
Year: 2023
Live fuel moisture content (LFMC) is a key determinant of landscape ignition potential, but quantitative estimates of its effects on wildfire are lacking. We present a causal inference framework to isolate the effect of LFMC from other drivers like fuel type, fuel amount, and meteorology. We show that in California when LFMC is below a critical flammability threshold, the likelihood of fires is 1.8 times as high statewide (2.25% vs. 1.27%) and 2.5 times as high in shrubs, compared to when LFMC is greater than the threshold. This risk ratio is >2 times when LFMC is 10% less than the…
Publication Type: Journal Article
Examining the influence of mid-tropospheric conditions and surface wind changes on extremely large fires and fire growth days
Year: 2023
Background: Previous work by the author and others has examined weather associated with growth of exceptionally large fires (‘Fires of Unusual Size’, or FOUS), looking at three of four factors associated with critical fire weather patterns: antecedent drying, high wind and low humidity. However, the authors did not examine atmospheric stability, the fourth factor. Aims: This study examined the relationships of mid-tropospheric stability and dryness used in the Haines Index, and changes in surface wind speed or direction, to growth of FOUS. Methods. Weather measures were paired with daily…
Publication Type: Journal Article
Summer and Fall Extreme Fire Weather Projected to Occur More Often and Affect a Growing Portion of California throughout the 21st Century
Year: 2022
Annual burned area has increased in California over the past three decades as a result of rising temperatures and a greater atmospheric demand for moisture, a trend that is projected to continue throughout the 21st century as a result of climate change. Here, we implement a bias-correction and statistical downscaling technique to obtain high resolution, daily meteorological conditions for input into two fire weather indices: vapor pressure deficit (VPD) and the Canadian Fire Weather Index System (FWI). We focus our analysis on 10 ecoregions that together account for the diverse range of…
Publication Type: Journal Article
Extreme Winds Alter Influence of Fuels and Topography on Megafire Burn Severity in Seasonal Temperate Rainforests under Record Fuel Aridity
Year: 2022
Nearly 0.8 million hectares of land were burned in the North American Pacific Northwest (PNW) over two weeks under record-breaking fuel aridity and winds during the extraordinary 2020 fire season, representing a rare example of megafires in forests west of the Cascade Mountains. We quantified the relative influence of weather, vegetation, and topography on patterns of high burn severity (>75% tree mortality) among five synchronous megafires in the western Cascade Mountains. Despite the conventional wisdom in climate-limited fire regimes that regional drivers (e.g., extreme aridity, and…
Publication Type: Journal Article
Interactions Between Fire Refugia and Climate-Environment Conditions Determine Mesic Subalpine Forest Recovery After Large and Severe Wildfires
Year: 2022
Infrequent stand-replacing wildfires are characteristic of mesic and/or cool conifer forests in western North America, where forest recovery within high-severity burn patch interiors can be slow, yet successful over long temporal periods (decades to centuries). Increasing fire frequency and high-severity burn patch size, under a warming climate, however, may challenge post-fire forest recovery, promoting landscape-level shifts in forest structure, composition, and distribution of non-forest patches. Crucial to a delay and/or impediment to this shift, fire refugia (i.e., remnant seed sources)…
Publication Type: Journal Article
Episodic occurrence of favourable weather constrains recovery of a cold desert shrubland after fire
Year: 2021
1. Key to the long-term resilience of dryland ecosystems is the recovery of foundation plant species following disturbance. In ecosystems with high interannual weather variability, understanding the influence of short-term environmental conditions on establishment of foundation species is essential for identifying vulnerable landscapes and developing restoration strategies. We asked how annual environmental conditions affect post-fire establishment of Artemisia tridentata, a shrub species that dominates landscapes across much of the western United States, and evaluated the influence of…
Publication Type: Journal Article
Contrasting the role of human- and lightning-caused wildfires on future fire regimes on a Central Oregon landscape
Year: 2021
Climate change is expected to increase fire activity in many regions of the globe, but the relative role of human vs. lightning-caused ignitions on future fire regimes is unclear. We developed statistical models that account for the spatiotemporal ignition patterns by cause in the eastern slopes of the Cascades in Oregon, USA. Projected changes in energy release component from a suite of climate models were used with our model to quantify changes in frequency and extent of human and lightning-caused fires and record-breaking events based on sizes of individual fires between contemporary (2006…
Publication Type: Journal Article
Existing Improvements in Simulation of Fire–Wind Interaction and Its Effects on Structures
Year: 2021
This work provides a detailed overview of existing investigations into the fire–wind interaction phenomena. Specifically, it considers: the fanning effect of wind, wind direction and slope angle, and the impact of wind on fire modelling, and the relevant analysis (numerical and experimental) techniques are evaluated. Recently, the impact of fire on buildings has been widely analysed. Most studies paid attention to fire damage evaluation of structures as well as structure fire safety engineering, while the disturbance interactions that influence structures have been neglected in prior studies…
Publication Type: Journal Article
Where and why do conifer forests persist in refugia through multiple fire events?
Year: 2021
Changing wildfire regimes are causing rapid shifts in forests worldwide. In particular, forested landscapes that burn repeatedly in relatively quick succession may be at risk of conversion when pre-fire vegetation cannot recover between fires. Fire refugia (areas that burn less frequently or severely than the surrounding landscape) support post-fire ecosystem recovery and the persistence of vulnerable species in fire-prone landscapes. Observed and projected fire-induced forest losses highlight the need to understand where and why forests persist in refugia through multiple fires. This…
Publication Type: Journal Article
Weather, Risk, and Resource Orders on Large Wildland Fires in the Western US
Year: 2020
Our results suggest that weather is a primary driver of resource orders over the course of extended attack efforts on large fires. Incident Management Teams (IMTs) synthesize information about weather, fuels, and order resources based on expected fire growth rather than simply reacting to observed fire growth. Background and Objectives: Weather conditions are a well-known determinant of fire behavior and are likely to become more erratic under climate change. Yet, there is little empirical evidence demonstrating how IMTs respond to observed or expected weather conditions. An understanding of…
Publication Type: Journal Article
Disjunct and decoupled? The persistence of a fire-sensitive conifer soecies in a historically frequent-fire landscape
Year: 2020
Local and regional species extirpations may become more common as changing climate and disturbance regimesaccelerate species’ in situ range contractions. Identifying locations that function as both climate and disturbancerefugia is critical for biodiversity conservation. Here, we investigate the persistence of a disjunct, fire-sensitiveconifer population, yellow-cedar (Callitropsis nootkatensis), in the historically frequent-fire landscape of the BlueMountains in eastern Oregon, USA. We used tree rings to reconstruct multi-century fire histories, which werethen used to compare historical mean…
Publication Type: Journal Article