Research Database
Displaying 41 - 46 of 46
Trajectories of change in sagebrush steppe vegetation communities in relation to multiple wildfires
Year: 2012
Repeated perturbations, both biotic and abiotic, can lead to fundamental changes in the nature of ecosystems, including changes in state. Sagebrush steppe communities provide important habitat for wildlife and grazing for livestock. Fire is an integral part of these systems, but there is concern that increased ignition frequencies and invasive species are fundamentally altering them. Despite these issues, the majority of studies of fire effects in systems dominated by Artemisia tridentata wyomingensis have focused on the effects of single burns. The Arid Lands Ecology Reserve (ALE), in south-…
Publication Type: Journal Article
Cheating Cheatgrass: New research to combat a wily invasive weed
Year: 2012
Cheatgrass and its cousin, red brome, are exotic annual grasses that have invaded and altered ecosystem dynamics in more than 41 million acres of desert shrublands between the Rockies and the Cascade-Sierra chain. A fungus naturally associated with these Bromus species has been found lethal to the plants’ soil-banked dormant seeds. Supported by the Joint Fire Science Program (JFSP), researchers Susan Meyer, Phil Allen, and Julie Beckstead cultured this fungus, Pyrenophora semeniperda, in the laboratory and developed an experimental field application that, in some trials, killed all the…
Publication Type: Report
Fire Effects on the Spatial Patterning of Soil Properties in Sagebrush Steppe, USA: A Meta-Analysis
Year: 2012
Understanding effects of changes in ecological disturbance regimes on soil properties, and capacity of soil properties to resist disturbance, is important for assessing ecological condition. In this meta-analysis, we examined the resilience of surface soil properties and their spatial patterning to disturbance by fire in sagebrush steppe of North America – a biome currently experiencing increases in wildfire due to climate change. We reviewed 39 studies that reported on soil properties for sagebrush steppe with distinct microsite (undershrub and interspace) patterning that was or was not…
Publication Type: Journal Article
The Use of Seedbed Modifications and Wood Chips to Accelerate Restoration of Well Pad Sites in Western Colorado, USA
Year: 2012
Semiarid ecosystems of Western North America are experiencing a boom in natural gas development. However, these systems are slow to recover from the disturbances created. The purpose of this study was to develop improved restoration techniques on natural gas well pads in Western Colorado. This study examined effects and interactions of seedbed modifications, soil amendments, seed mixtures, and seeding methods. The experiment was conducted in pinyon-juniper and semidesert shrub plant communities on five natural gas well pads beginning in 2006. Soil and plant cover data were collected to assess…
Publication Type: Journal Article
Effectiveness of post-fire seeding at the Fitzner-Eberhardt Arid Land Ecology Reserve, Washington
Year: 2011
In August 2007, the Milepost 17 and Wautoma fires burned a combined total of 77,349 acres (31,302 hectares) of the Fitzner-Eberhardt Arid Land Ecology Reserve (ALE), part of the Hanford Reach National Monument administered by the U.S. Fish and Wildlife Service (USFWS) Mid-Columbia National Wildlife Refuge. In 2008, the USFWS implemented a series of seeding and herbicide treatments to mitigate potential negative consequences of these fires, including mortality of native vegetation, invasion of Bromus tectorum (cheatgrass), and soil erosion. Treatments included combinations of seeding (drill…
Publication Type: Report
Consume 3.0 -- A Software Tool for Computing Fuel Consumption
Year: 2009
Knowing when, where and how fire should be applied is critical for land managers planning to use fire prescriptively for land management goals, or allowing fires ignited naturally to burn. Myriad variables need to be taken into consideration to determine how fire will consume different fuels. Consume, version 3.0 is a user-friendly software that incorporates the Fuel Characteristic Classification System (FCCS) to predict fuel consumption, pollutant emissions, and heat release. A flexible tool, Consume 3.0 makes these calculations based on fuel loadings, fuel moisture and other environmental…
Publication Type: Report