Research Database
Displaying 61 - 80 of 112
Towards improving wildland firefighter situational awareness through daily fire behaviour risk assessments in the US Northern Rockies and Northern Great Basin
Year: 2017
Wildland firefighters must assess potential fire behaviour in order to develop appropriate strategies and tactics that will safely meet objectives. Fire danger indices integrate surface weather conditions to quantify potential variations in fire spread rates and intensities and therefore should closely relate to observed fire behaviour. These indices could better inform fire management decisions if they were linked directly to observed fire behaviour. Here, we present a simple framework for relating fire danger indices to observed categorical wildland fire behaviour. Ordinal logistic…
Publication Type: Journal Article
Seasonal burning of juniper woodlands and spatial recovery of herbaceous vegetation
Year: 2016
Decreased fire activity has been recognized as a main cause of expansion and infilling of North American woodlands. Piñon-juniper (Pinus-Juniperus) woodlands in the western United States have expanded in area 2–10-fold since the late 1800s. Woodland control measures using chainsaws, heavy equipment and prescribed fire are used to restore big sagebrush (Artemisia tridentata Nutt.) steppe plant communities and reduce woody fuel loading. Immediate objectives in the initial control of piñon-juniper are; (1) recovery of perennial herbaceous species to restore site composition, structure and…
Publication Type: Journal Article
The Fire Weather Accuracy and Lightning Ignition Probability System
Year: 2015
Weather forecasts can help identify environmental conditions conducive to prescribed burning or to increased fire danger. These conditions are important components of fire management tools such as fire ignition potential maps, fire danger rating systems, fire behavior predictions, and smoke dispersion modeling. Fire managers use these tools to make decisions on when to conduct prescribed burns, how to manage wildfires, and how to pre-position fire suppression forces. Forecast weather conditions provide variables such as temperature, relative humidity, solar radiation, precipitation (or lack…
Publication Type: Report
The Potential Impact of Regional Climate Change on Fire Weather in the United States
Year: 2015
Climate change is expected to alter the frequency and severity of atmospheric conditions conducive for wildfires. In this study, we assess potential changes in fire weather conditions for the contiguous United States using the Haines Index (HI), a fire weather index that has been employed operationally to detect atmospheric conditions favorable for large and erratic fire behavior. The index summarizes lower atmosphere stability and dryness into an integer value with higher values indicting more fire-prone conditions. We use simulations produced by the North American Regional Climate Change…
Publication Type: Journal Article
Winter grazing can reduce wildfire size, intensity and behaviour in a shrub-grassland
Year: 2015
An increase in mega-fires and wildfires is a global issue that is expected to become worse with climate change. Fuel treatments are often recommended to moderate behaviour and decrease severity of wildfires; however, the extensive nature of rangelands limits the use of many treatments. Dormant-season grazing has been suggested as a rangeland fuel treatment, but its effects on fire characteristics are generally unknown. We investigated the influence of dormant-season (winter) grazing by cattle (Bos taurus) on fuel characteristics, fire behaviour and area burned in Wyoming big sagebrush (…
Publication Type: Journal Article
Dormant season grazing may decrease wildfire probability by increasing fuel moisture and reducing fuel amount and continuity
Year: 2015
Mega-fires and unprecedented expenditures on fire suppression over the past decade have resulted in a renewed focus on presuppression management. Dormant season grazing may be a treatment to reduce fuels in rangeland, but its effects have not been evaluated. In the present study, we evaluated the effect of dormant season grazing (winter grazing in this ecosystem) by cattle on fuel characteristics in sagebrush (Artemisia L.) communities at five sites in south-eastern Oregon. Winter grazing reduced herbaceous fuel cover, continuity, height and biomass without increasing exotic annual grass…
Publication Type: Journal Article
Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 1. Concepts for understanding and applying restoration
Year: 2015
Sagebrush steppe ecosystems in the United States currently occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) is a landscape-dependent bird that requires intact habitat and combinations of sagebrush and perennial grasses to exist. In addition, other sagebrush-obligate animals also have similar requirements and restoration of…
Publication Type: Report
Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 2. Landscape level restoration decisions
Year: 2015
Sagebrush steppe ecosystems in the United States currently (2015) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) is a landscape-dependent bird that requires intact habitat and combinations of sagebrush and perennial grasses to exist. In addition, other sagebrush-obligate animals also have similar requirements and restoration of…
Publication Type: Report
The influence of experimental wind disturbance on forest fuels and fire characteristics
Year: 2014
Current theory in disturbance ecology predicts that extreme disturbances in rapid succession can lead to dramatic changes in species composition or ecosystem processes due to interactions among disturbances. However, the extent to which less catastrophic, yet chronic, disturbances such as wind damage and fire interact is not well studied. In this study, we simulated wind-caused gaps in a Pinus taeda forest in the Piedmont of north-central Georgia using static winching of trees to examine how wind damage may alter fuel characteristics and the behavior of subsequent prescribed fire. We found…
Publication Type: Journal Article
Fuel treatments and landform modify landscape patterns of burn severity in an extreme fire event
Year: 2014
Under a rapidly warming climate, a critical management issue in semiarid forests of western North America is how to increase forest resilience to wildfire. We evaluated relationships between fuel reduction treatments and burn severity in the 2006 Tripod Complex fires, which burned over 70 000 ha of mixed-conifer forests in the North Cascades range of Washington State and involved 387 past harvest and fuel treatment units. A secondary objective was to investigate other drivers of burn severity including landform, weather, vegetation characteristics, and a recent mountain pine beetle outbreak.…
Publication Type: Journal Article
Vegetation Recovery and Fuel Reduction after Seasonal Burning of Western Juniper
Year: 2014
The decrease in fire activity has been recognized as a main cause of expansion of North American woodlands. Piñon-juniper habitat in the western United States has expanded in area nearly 10-fold since the late 1800s. Woodland control measures using chainsaws, heavy equipment, and prescribed fire are used to restore sagebrush steppe plant communities. We compared vegetation recovery following cutting and prescribed fire on three sites in late Phase 2 (mid succession) and Phase 3 (late succession) western juniper (Juniperus occidentalis Hook.) woodlands in southeast Oregon. Treatments were…
Publication Type: Journal Article
Hydrologic and erosion responses to wildfire along the rangeland-xeric forest continuum in the western US: a review and model of hydrologic vulnerability
Year: 2014
The recent increase in wildfire activity across the rangeland–xeric forest continuum in the western United States has landscape-scale consequences in terms of runoff and erosion. Concomitant cheatgrass (Bromus tectorum L.) invasions, plant community transitions and a warming climate in recent decades along grassland–shrubland–woodland–xeric forest transitions have promoted frequent and large wildfires, and continuance of the trend appears likely if warming climate conditions prevail. These changes potentially increase overall hydrologic vulnerability by spatially and temporally increasing…
Publication Type: Journal Article
Mapping day-of-burning with coarse-resolution satellite fire-detection data
Year: 2014
Evaluating the influence of observed daily weather on observed fire-related effects (e.g. smoke production, carbon emissions and burn severity) often involves knowing exactly what day any given area has burned. As such, several studies have used fire progression maps – in which the perimeter of an actively burning fire is mapped at a fairly high temporal resolution – or MODIS satellite data to determine the day-of-burning, thereby allowing an evaluation of the influence of daily weather. However, fire progression maps have many caveats, the most substantial being that they are rarely mapped…
Publication Type: Journal Article
Modifying the Canadian Fine Fuel Moisture Code for masticated surface fuels
Year: 2014
Mechanical mastication is a fuel management technique that disrupts the vertical continuity of forest fuels by shredding of trees and understory vegetation into a highly compacted surface fuel bed. Despite the increasing application of mastication to manage wildfire risk, there is little information to date on fuel moisture in masticated fuels and optimal ignition patterns for prescribed burning. We investigated the applicability of the Fine Fuel Moisture Code (FFMC), a component of the Canadian Fire Weather Index (FWI) System, in tracking the diurnal and day-to-day changes in masticated…
Publication Type: Journal Article
Regional projections of the likelihood of very large wildland fires under a changing climate in the contiguous Western United States
Year: 2014
Seasonal changes in the climatic potential for very large wildfires (VLWF ≥ 50,000 ac ~ 20,234 ha) across the western contiguous United States are projected over the 21st century using generalized linear models and downscaled climate projections for two representative concentration pathways (RCPs). Significant (p ≤ 0.05) increases in VLWF probability for climate of the mid-21st century (2031–2060) relative to contemporary climate are found, for both RCP 4.5 and 8.5. The largest differences are in the Eastern Great Basin, Northern Rockies, Pacific Northwest, Rocky Mountains, and Southwest.…
Publication Type: Journal Article
Is fire exclusion in mountain big sagebrush communities prudent? Soil nutrient, plant diversity and arthropod response to burning
Year: 2014
Fire has largely been excluded from many mountain big sagebrush communities. Managers are reluctant to reintroduce fire, especially in communities without significant conifer encroachment, because of the decline in sagebrush-associated wildlife. Given this management direction, a better understanding of fire exclusion and burning effects is needed. We compared burned to unburned plots at six sites in Oregon. Soil nutrient availability generally increased with burning. Plant diversity increased with burning in the first post-burn year, but decreased by the third post-burn year. Burning altered…
Publication Type: Journal Article
Models for predicting fuel consumption in sage-brush-dominated ecosystems
Year: 2013
Fuel consumption predictions are necessary to accurately estimate or model fire effects, including pollutant emissions during wildland fires. Fuel and environmental measurements on a series of operational prescribed fires were used to develop empirical models for predicting fuel consumption in big sagebrush (Artemisia tridentata Nutt.) ecosystems. Models are proposed for predicting fuel consumption during prescribed fires in the fall and the spring. Total prefire fuel loading ranged from 5.3–23.6 Mg · ha−1; between 32% and 92% of the total loading was composed of live and dead big sagebrush.…
Publication Type: Journal Article
Influence of climate and environment on post-fire recovery of mountain sagbrush
Year: 2013
In arid and semi-arid landscapes around the world, wildfire plays a key role in maintaining species diversity. Dominant plant associations may depend upon particular fire regime characteristics for their persistence. Mountain shrub communities in high-elevation landscapes of the Intermountain West, USA, are strongly influenced by the post-fire recovery dynamics of the obligate-seeding shrub, mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana [Rydb.] Beetle). This species is a short-distance disperser with a short-lived seedbank, leading to highly variable post-fire recovery…
Publication Type: Journal Article
Sagebrush steppe recovery after fire varies by development phase of Juniperus occidentalis woodland
Year: 2013
Woodland ecosystems of the world have been changed by land use demands, altered fire regimes, invasive species and climate change. Reduced fire frequency is recognised as a main causative agent for Pinus–Juniperus L. (piñon–juniper) expansion in North American woodlands. Piñon–juniper control measures, including prescribed fire, are increasingly employed to restore sagebrush steppe communities. We compared vegetation recovery following prescribed fire on Phase 2 (mid-succession) and Phase 3 (late-succession) Juniperus occidentalis Hook. (western juniper) woodlands in Oregon. The herbaceous…
Publication Type: Journal Article
Analysis of Meteorological Conditions for the Yakima Smoke Intrusion Case Study, 28 September 2009
Year: 2013
On 28 September 2009, the Naches Ranger District on the Okanogan-Wenatchee National Forest in south-central Washington State ignited an 800-ha prescribed fire. Later that afternoon, elevated PM2.5 concentrations and visible smoke were reported in Yakima, Washington, about 40 km east of the burn unit. The U.S. National Weather Service forecast for the day had predicted good dispersion conditions and winds that would carry the smoke to the less populated area north of Yakima. We undertook a case study of this event to determine whether conditions leading to the intrusion of the smoke plume into…
Publication Type: Report