Research Database
Displaying 1 - 20 of 41
Mechanical mastication and prescribed burning reduce forest fuels and alter stand structure in dry coniferous forests
Year: 2025
Mechanical thinning is often prescribed in dry coniferous forests to reduce stand density, ladder fuels, and canopy fuels before using prescribed burning to manage surface fuels. Mechanical mastication is a tool for thinning forests where commercial thinning is not viable. We evaluated the effects of mastication-based thinning – with and without subsequent prescribed burning – on forest structure and fuels in dry coniferous forests of the Pacific Northwest, USA. We thinned stands by masticating small-diameter trees and depositing the resulting slash on the forest floor. We then used…
Publication Type: Journal Article
Small-scale fire refugia increase soil bacterial and fungal richness and increase community cohesion nine years after fire
Year: 2025
Small-scale variation in wildfire behavior may cause large differences in belowground bacterial and fungal communities with consequences for belowground microbial diversity, community assembly, and function. Here we combine pre-fire, active-fire, and post-wildfire measurements in a mixed-conifer forest to identify how fine-scale wildfire behavior, unburned refugia, and aboveground forest structure are associated with belowground bacterial and fungal communities nine years after wildfire. We used fine-scale mapping of small (0.9–172.6 m2) refugia to sample soil-associated burned and…
Publication Type: Journal Article
Long-term tree population growth can predict woody encroachment patterns
Year: 2025
Recent increases in woody plant density in dryland ecosystems—or “woody encroachment”—around the world are often attributed to land-use changes such as increased livestock grazing and wildfire suppression or to global environmental trends (e.g., increasing atmospheric carbon dioxide). While such changes have undoubtedly impacted ecosystem structure and function, the evidence linking them to woody encroachment is mixed, and the underlying processes are not fully understood. To clarify the role of demographic processes in changing woody plant abundance, we conducted a meta-analysis of tree age…
Publication Type: Journal Article
Quantifying Western US tree carbon stocks and sequestration from fires
Year: 2025
Background: Forest ecosystems function as the largest terrestrial carbon sink globally. In the Western US, fires play a crucial role in modifying forest carbon storage, sequestration capacity, and the transfer of carbon from live to dead carbon pools. We utilized remeasurements of more than 700,000 trees from 24,000 locations from the US Department of Agriculture Forest Service’s Forest Inventory and Analysis program (FIA) and incorporated supplementary information on wildfires from the Monitoring Trends in Burn Severity dataset. These datasets allowed us to develop models that examined the…
Publication Type: Journal Article
Insights Into Nature-Based Climate Solutions: Managing Forests for Climate Resilience and Carbon Stability
Year: 2025
Successful implementation of forest management as a nature-based climate solution is dependent on the durability of management-induced changes in forest carbon storage and sequestration. As forests face unprecedented stability risks in the face of ongoing climate change, much remains unknown regarding how management will impact forest stability, or how interactions with climate might shift the response of forests to management across spatiotemporal scales. Here, we used a process-based model to simulate multidecadal projections of forest dynamics in response to changes in management and…
Publication Type: Journal Article
Trees in Fire-Maintained Forests Have Similar Growth Responses to Drought, but Greater Stomatal Conductance Than Trees in Fire-Excluded Forests
Year: 2025
In the western US, increased tree density in dry conifer forests from fire exclusion has caused tree growth declines, which is being compounded by hotter multi-year droughts. The reintroduction of frequent, low-severity wildfire reduces forest density by removing fire-intolerant trees, which can reduce competition for water and improve tree growth response to drought. We assessed how lower forest density following frequent, low-severity wildfire affected tree stomatal conductance and growth response to drought by coring and measuring competition surrounding ponderosa pines (Pinus…
Publication Type: Journal Article
Long-term influence of prescribed burning on subsequent wildfire in an old-growth coast redwood forest
Year: 2025
Background: Prescribed burning is an effective tool for reducing fuels in many forest types, yet there have been few opportunities to study forest resilience to wildfire in areas previously treated. In 2020, a large-scale high-intensity wildfire burned through an old-growth coast redwood (Sequoia sempervirens) forest with a mixed land management history, providing a rare opportunity to compare early post-wildfire data between areas with and without previous application of prescribed burning. The purpose of this study was to analyze the differences between these two treatments in…
Publication Type: Journal Article
Effects of long-term ecological research and cognitive biases on the evaluation of scientific information by public land managers in Oregon and Washington, USA
Year: 2025
Natural resource managers (managers) value and use scientific information to inform their decision-making process in a variety of ways. The scientific information managers use depends on a variety of factors, including the source of the information and ease of access. Barriers, such as paywalls, insufficient capacity, and information overload play an important role in determining what scientific information managers have access and attend to. Additionally, characteristics of managers themselves also influence what scientific information they prioritize and implement. Specific factors likely…
Publication Type: Journal Article
Accelerated forest restoration may benefit spotted owls through landscape complementation
Year: 2024
Animals often rely on the presence of multiple, spatially segregated cover types to satisfy their ecological needs; the juxtaposition of these cover types is called landscape complementation. In ecosystems that have been homogenized because of human land use, such as fire-suppressed forests, management activities have the potential to increase the heterogeneity of cover types and, therefore, landscape complementation. We modeled changes to California spotted owl (Strix occidentalis occidentalis) nesting/roosting habitat, foraging habitat and habitat co-occurrence (i.e. landscape…
Publication Type: Journal Article
Ladder fuels rather than canopy volumes consistently predict wildfire severity even in extreme topographic-weather conditions
Year: 2024
Drivers of forest wildfire severity include fuels, topography and weather. However, because only fuels can be actively managed, quantifying their effects on severity has become an urgent research priority. Here we employed GEDI spaceborne lidar to consistently assess how pre-fire forest fuel structure affected wildfire severity across 42 California wildfires between 2019–2021. Using a spatial-hierarchical modeling framework, we found a positive concave-down relationship between GEDI-derived fuel structure and wildfire severity, marked by increasing severity with greater fuel loads until a…
Publication Type: Journal Article
The influence of wildfire risk reduction programs and practices on recreation visitation
Year: 2024
Background: The increasing extent and severity of uncharacteristic wildfire has prompted numerous policies and programs promoting landscape-scale fuels reduction. Aims: We used novel data sources to measure how recreation was influenced by fuels reduction efforts under the US Forest Service Collaborative Forest Landscape Restoration (CFLR) Program. Methods: We used posts to four social media platforms to estimate the number of social media user-days within CFLR landscapes and asked: (1) did visitation within CFLR Program landscapes between…
Publication Type: Journal Article
Repeated fuel treatments fall short of fire-adapted regeneration objectives in a Sierra Nevada mixed conifer forest, USA
Year: 2024
Fire exclusion over the last two centuries has driven a significant fire deficit in the forests of western North America, leading to widespread changes in the composition and structure of these historically fire-adapted ecosystems. Fuel treatments have been increasingly applied over the last few decades to mitigate fire hazard, yet it is unclear whether these fuel-focused treatments restore the fire-adapted conditions and species that will allow forests to persist into the future. A vital prerequisite of restoring fire-adaptedness is ongoing establishment of fire-tolerant tree species, and…
Publication Type: Journal Article
Tamm review: A meta-analysis of thinning, prescribed fire, and wildfire effects on subsequent wildfire severity in conifer dominated forests of the Western US
Year: 2024
Increased understanding of how mechanical thinning, prescribed burning, and wildfire affect subsequent wildfire severity is urgently needed as people and forests face a growing wildfire crisis. In response, we reviewed scientific literature for the US West and completed a meta-analysis that answered three questions: (1) How much do treatments reduce wildfire severity within treated areas? (2) How do the effects vary with treatment type, treatment age, and forest type? (3) How does fire weather moderate the effects of treatments? We found overwhelming evidence that mechanical thinning with…
Publication Type: Journal Article
Unlocking the potential of Airborne LiDAR for direct assessment of fuel bulk density and load distributions for wildfire hazard mapping
Year: 2024
Large-scale mapping of fuel load and fuel vertical distribution is essential for assessing fire danger, setting strategic goals and actions, and determining long-term resource needs. The Airborne LiDAR system can fulfil such goal by accurately capturing the three-dimensional arrangement of vegetation at regional and national scales. We developed a novel method to estimate multiple metrics of fuel load and vertical bulk density distribution for any type of vegetation. The approach uses Beer-Lambert law for inverting the ALS point cloud into vertical plant area density profiles, which are…
Publication Type: Journal Article
Forest thinning and prescribed burning treatments reduce wildfire severity and buffer the impacts of severe fire weather
Year: 2024
BackgroundThe capacity of forest fuel treatments to moderate the behavior and severity of subsequent wildfires depends on weather and fuel conditions at the time of burning. However, in-depth evaluations of how treatments perform are limited because encounters between wildfires and areas with extensive pre-fire data are rare. Here, we took advantage of a 1200-ha randomized and replicated experiment that burned almost entirely in a subsequent wildfire under a wide range of weather conditions. We compared the impacts of four fuel treatments on fire severity, including two thin-only, a thin-burn…
Publication Type: Journal Article
Forest structural complexity and ignition pattern influence simulated prescribed fire effects
Year: 2024
Forest structural characteristics, the burning environment, and the choice of ignition pattern each influence prescribed fire behaviors and resulting fire effects; however, few studies examine the influences and interactions of these factors. Understanding how interactions among these drivers can influence prescribed fire behavior and effects is crucial for executing prescribed fires that can safely and effectively meet management objectives. To analyze the interactions between the fuels complex and ignition patterns, we used FIRETEC, a three-dimensional computational fluid dynamics fire…
Publication Type: Journal Article
Mechanical thinning restores ecological functions in a seasonally dry ponderosa pine forest in the inland Pacific Northwest, USA
Year: 2023
An increasingly important goal of federal land managers in seasonally dry forests of the western US is restoring forest resilience. In this study, we quantified the degree to which a thinning treatment in a dry forest of eastern Oregon restored aspects of forest resilience by focusing on key functional attributes of our study system. First, we measured several physiological responses of overstory trees that are associated with resilience, including radial growth, resin production, abundance of non-structural carbohydrates (NSC), and leaf area. Second, we investigated understory vegetation…
Publication Type: Journal Article
Harnessing Natural Disturbances: A Nature-Based Solution for Restoring and Adapting Dry Forests in the Western USA to Climate Change
Year: 2023
Natural disturbances (wildfires, droughts, beetle outbreaks) shaped temperate forests for millennia, including dry forests of the western USA. Could they now best restore and adapt dry forests to climate change while protecting nearby communities? Mechanical fuel-reduction treatments (e.g., thinning) reduce landscape heterogeneity and appear ineffective since <1% of the treated area encounters fire each year and fires are still increasing. We propose and analyze a nature-based solution (NbS), using natural disturbances, to see whether it is feasible, how long it might take, and whether it…
Publication Type: Journal Article
Shaded fuel breaks create wildfire-resilient forest stands: lessons from a long-term study in the Sierra Nevada
Year: 2023
Background In California’s mixed-conifer forests, fuel reduction treatments can successfully reduce fire severity, bolster forest resilience, and make lasting changes in forest structure. However, current understanding of the duration of treatment effectiveness is lacking robust empirical evidence. We leveraged data collected from 20-year-old forest monitoring plots within fuel treatments that captured a range of wildfire occurrence (i.e., not burned, burned once, or burned twice) following initial plot establishment and overstory thinning and prescribed fire treatments. Results Initial…
Publication Type: Journal Article
Fuel Profiles and Biomass Carbon Following Bark Beetle Outbreaks: Insights for Disturbance Interactions from a Historical Silvicultural Experiment
Year: 2023
Anticipating consequences of disturbance interactions on ecosystem structure and function is a critical management priority as disturbance activity increases with warming climate. Across the Northern Hemisphere, extensive tree mortality from recent bark beetle outbreaks raises concerns about potential fire behavior and post-fire forest function. Silvicultural treatments (that is, partial or complete cutting of forest stands) may reduce outbreak severity and subsequent fuel loads, but longevity of pre-outbreak treatment effects on outbreak severity and post-outbreak fuel profiles remains…
Publication Type: Journal Article