Research Database
Displaying 101 - 120 of 192
The Weather Conditions for Desired Smoke Plumes at a FASMEE Burn Site
Year: 2018
Weather is an important factor that determines smoke development, which is essential information for planning smoke field measurements. This study identifies the synoptic systems that would favor to produce the desired smoke plumes for the Fire and Smoke Model Evaluation Experiment (FASMEE). Daysmoke and PB-Piedmont (PB-P) models are used to simulate smoke plume evolution during the day time and smoke drainage and fog formation during the nighttime for hypothetical prescribed burns on 5–8 February 2011 at the Stewart Army Base in the southeastern United States. Daysmoke simulation is…
Publication Type: Journal Article
Recent post-wildfire salvage logging benefits local and landscape floral and bee communities
Year: 2018
Understanding the implications of shifts in disturbance regimes for plants and pollinators is essential for successful land management. Wildfires are essential natural disturbances that are important drivers of forest biodiversity, and there is often pressure to respond to wildfire with management like post-wildfire logging (i.e., removal of dead trees for economic value immediately following wildfire). We investigated how local floral and bee density, species richness, and community composition and dispersion were influenced by post-wildfire logging, and how these effects differed between an…
Publication Type: Journal Article
Key Findings and Messages from the Go Big or Go Home? Project
Year: 2018
About Go Big or Go Home?: The goals of this research project were to analyze how public land managers and stakeholders in Oregon’s east Cascades can plan and manage at landscape scales using scientific research and participatory simulation modeling (Envision). To learn more, visit: gbgh.forestry.oregonstate.edu
Publication Type: Report
Tree traits influence response to fire severity in the western Oregon Cascades, USA
Year: 2018
Wildfire is an important disturbance process in western North American conifer forests. To better understand forest response to fire, we used generalized additive models to analyze tree mortality and long-term (1 to 25 years post-fire) radial growth patterns of trees that survived fire across a burn severity gradient in the western Cascades of Oregon. We also used species-specific leaf-area models derived from sapwood estimates to investigate the linkage between photosynthetic capacity and growth response. Larger trees and shade intolerant trees had a higher probability of surviving fire.…
Publication Type: Journal Article
Fuel mass and stand structure 13 years after logging of a severely burned ponderosa pine forest in northeastern Oregon, U.S.A
Year: 2018
Stand structure and fuel mass were measured in 2011, 13 years after logging of a seasonally dry, ponderosa pine-dominated forest that had burned severely in the 1996 Summit Wildfire, Malheur National Forest, northeastern Oregon, U.S.A. Data are compared to those taken one year after post-fire logging (1999), and analyzed in the context of a second fire (Sunshine Fire) that burned through one of the four treatment blocks in 2008. Three treatments were evaluated in a randomized block experiment: unlogged control, commercial harvest (most dead merchantable trees removed), and fuel reduction…
Publication Type: Journal Article
Forest Service Managers' Perception of Landscapes and Computer Models
Year: 2018
About Go Big or Go Home?: The goals of this research project were to analyze how public land managers and stakeholders in Oregon’s east Cascades can plan and manage at landscape scales using scientific research and participatory simulation modeling (Envision). To learn more, visit: gbgh.forestry.oregonstate.edu
Publication Type: Report
Prescribed fire regimes subtly alter ponderosa pine forest plant community structure
Year: 2018
Prescribed fire is an active management tool used to address wildfire hazard and ecological concerns associated with fire exclusion and suppression over the past century. Despite widespread application in the United States, there is considerable inconsistency and lack of information regarding the extent to which specific outcomes are achieved and under what prescribed fire regimes, particularly in regard to ecological goals related to plant community structure. We quantify differences and patterns in plant functional group abundance, species richness and diversity, and other key forest…
Publication Type: Journal Article
Fire and tree death: understanding and improving modeling of fire-induced tree mortality
Year: 2018
Each year wildland fires kill and injure trees on millions of forested hectares globally, affecting plant and animal biodiversity, carbon storage, hydrologic processes, and ecosystem services. The underlying mechanisms of fire-caused tree mortality remain poorly understood, however, limiting the ability to accurately predict mortality and develop robust modeling applications, especially under novel future climates. Virtually all post-fire tree mortality prediction systems are based on the same underlying empirical model described in Ryan and Reinhardt (1988 Can. J. For. Res. 18 1291–7), which…
Publication Type: Journal Article
Advancing the Science of Wildland Fire Dynamics Using Process-Based Models
Year: 2018
As scientists and managers seek to understand fire behavior in conditions that extend beyond the limits of our current empirical models and prior experiences, they will need new tools that foster a more mechanistic understanding of the processes driving fire dynamics and effects. Here we suggest that process-based models are powerful research tools that are useful for investigating a large number of emerging questions in wildland fire sciences. These models can play a particularly important role in advancing our understanding, in part, because they allow their users to evaluate the potential…
Publication Type: Journal Article
Landscapes 101: Understanding Landscape Approaches to Forest Restoration and Management
Year: 2018
About Go Big or Go Home?: The goals of this research project were to analyze how public land managers and stakeholders in Oregon’s east Cascades can plan and manage at landscape scales using scientific research and participatory simulation modeling (Envision). To learn more, visit: gbgh.forestry.oregonstate.edu
Publication Type: Report
Evidence for scale‐dependent topographic controls on wildfire spread
Year: 2018
Wildfire ecosystems are thought to be self‐regulated through pattern–process interactions between ignition frequency and location, and patterns of burned and recovering vegetation. Yet, recent increases in the frequency of large wildfires call into question the application of self‐organization theory to landscape resilience. Topography represents a stable bottom‐up template upon which fire interacts as both a physical and an ecological process. However, it is unclear how topographic control changes geographically and across spatial scales. We analyzed fire perimeter and topography data from…
Publication Type: Journal Article
Climate change and the eco-hydrology of fire: will area burned increase in a warming western USA?
Year: 2017
Wildfire area is predicted to increase with global warming. Empirical statistical models and process-based simulations agree almost universally. The key relationship for this unanimity, observed at multiple spatial and temporal scales, is between drought and fire. Predictive models often focus on ecosystems in which this relationship appears to be particularly strong, such as mesic and arid forests and shrublands with substantial biomass such as chaparral. We examine the drought-fire relationship, specifically the correlations between water-balance deficit and annual area burned, across the…
Publication Type: Journal Article
The normal fire environment—Modeling environmental suitability for large forest wildfires using past, present, and future climate normals
Year: 2017
We modeled the normal fire environment for occurrence of large forest wildfires (>40 ha) for the Pacific Northwest Region of the United States. Large forest wildfire occurrence data from the recent climate normal period (1971–2000) was used as the response variable and fire season precipitation, maximum temperature, slope, and elevation were used as predictor variables. A projection of our model onto the 2001–2030 climate normal period showed strong agreement between model predictions and the area of forest burned by large wildfires from 2001 to 2015 (independent fire data). We then used…
Publication Type: Journal Article
Spatiotemporal dynamics of simulated wildfire, forest management, and forest succession in central Oregon, USA.
Year: 2017
We use the simulation model Envision to analyze long-term wildfire dynamics and the effects of different fuel management scenarios in central Oregon, USA. We simulated a 50-year future where fuel management activities were increased by doubling and tripling the current area treated while retaining existing treatment strategies in terms of spatial distribution and treatment type. We modeled forest succession using a state-and-transition approach and simulated wildfires based on the contemporary fire regime of the region. We tested for the presence of temporal trends and overall differences in…
Publication Type: Journal Article
Climate, wildfire, and erosion ensemble foretells more sediment in western USA watersheds
Year: 2017
The area burned annually by wildfires is expected to increase worldwide due to climate change. Burned areas increase soil erosion rates within watersheds, which can increase sedimentation in downstream rivers and reservoirs. However, which watersheds will be impacted by future wildfires is largely unknown. Using an ensemble of climate, fire, and erosion models, we show that postfire sedimentation is projected to increase for nearly nine tenths of watersheds by >10% and for more than one third of watersheds by >100% by the 2041 to 2050 decade in the western USA. The projected increases…
Publication Type: Journal Article
Fires following Bark Beetles: Factors Controlling Severity and Disturbance Interactions in Ponderosa Pine
Year: 2017
Previous studies have suggested that bark beetles and fires can be interacting disturbances, whereby bark beetle–caused tree mortality can alter the risk and severity of subsequent wildland fires. However, there remains considerable uncertainty around the type and magnitude of the interaction between fires following bark beetle attacks, especially in drier forest types such as those dominated by ponderosa pine (Pinus ponderosa Lawson & C. Lawson). We used a full factorial design across a range of factors thought to control bark beetle−fire interactions, including the temporal phase of the…
Publication Type: Journal Article
Impacts of lodgepole pine dwarf mistletoe (Arceuthobium americanum) infestation on stand structure and fuel load in lodgepole pine dominated forests in central Colorado
Year: 2017
Parasitic plants are capable of causing substantial alterations to plant communities through impacts on individual host plants. Lodgepole pine dwarf mistletoe is an important parasite in forests of the western USA that causes reductions to productivity and is thought to alter wildland fuel complexes. These impacts are hypothesized to vary with infestation severity. To test this, we used a linear mixed modeling approach to evaluate the relationship between dwarf mistletoe infestation severity and parameters representing stand structure and surface and canopy fuels in infested lodgepole pine…
Publication Type: Journal Article
Mortality predictions of fire-injured large Douglas-fir and ponderosa pine in Oregon and Washington, USA
Year: 2017
Wild and prescribed fire-induced injury to forest trees can produce immediate or delayed tree mortality but fire-injured trees can also survive. Land managers use logistic regression models that incorporate tree-injury variables to discriminate between fatally injured trees and those that will survive. We used data from 4024 ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and 3804 Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees from 23 fires across Oregon and Washington to assess the discriminatory ability of 21 existing logistic regression models and a polychotomous key (Scott…
Publication Type: Journal Article
Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA.
Year: 2017
Fire-prone landscapes present many challenges for both managers and policy makers in developing adaptive behaviors and institutions. We used a coupled human and natural systems framework and an agent-based landscape model to examine how alternative management scenarios affect fire and ecosystem services metrics in a fire-prone multiownership landscape in the eastern Cascades of Oregon. Our model incorporated existing models of vegetation succession and fire spread and information from original empirical studies of landowner decision making. Our findings indicate that alternative management…
Publication Type: Journal Article
Fire and dwarf mistletoe (Viscaceae: Arceuthobium species) in western North America: contrasting Arceuthobium tsugense and Arceuthobium americanum
Year: 2017
Dwarf mistletoes (Viscaceae: Arceuthobium spp.) and fire interact in important ways in the coniferous forests of western North America. Fire directly affects dwarf mistletoes by killing the host, host branch, or heating/smoking the aerial shoots and fruits. Fire is a primary determinant of dwarf mistletoe distribution on the landscape, and time since fire controls many aspects of dwarf mistletoe epidemiology. Conversely, dwarf mistletoes can influence fire by causing changes in forest composition, structure, and fuels. Prescribed fire is important for management of dwarf mistletoes, while…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 4
- 5
- 6
- 7
- 8
- …
- Next page
- Last page