Research Database
Displaying 21 - 40 of 263
Finding floral and faunal species richness optima among active fire regimes
Year: 2025
Changing fire regimes have important implications for biodiversity and challenge traditional conservation approaches that rely on historical conditions as proxies for ecological integrity. This historical-centric approach becomes increasingly tenuous under climate change, necessitating direct tests of environmental impacts on biodiversity. At the same time, widespread departures from historical fire regimes have limited the ability to sample diverse fire histories. We examined 2 areas in California's Sierra Nevada (USA) with active fire regimes to study the responses of bird, plant, and bat…
Publication Type: Journal Article
Small-scale fire refugia increase soil bacterial and fungal richness and increase community cohesion nine years after fire
Year: 2025
Small-scale variation in wildfire behavior may cause large differences in belowground bacterial and fungal communities with consequences for belowground microbial diversity, community assembly, and function. Here we combine pre-fire, active-fire, and post-wildfire measurements in a mixed-conifer forest to identify how fine-scale wildfire behavior, unburned refugia, and aboveground forest structure are associated with belowground bacterial and fungal communities nine years after wildfire. We used fine-scale mapping of small (0.9–172.6 m2) refugia to sample soil-associated burned and…
Publication Type: Journal Article
Evidence for strong bottom-up controls on fire severity during extreme events
Year: 2025
BackgroundRecord fire years in recent decades have challenged post-fire forest recovery in the western United States and beyond. To improve management responses, it is critical that we understand the conditions under which management can mitigate severe wildfire impacts, and when it cannot. Here, we evaluated the influence of top-down and bottom-up fire severity forcings on 17 wildfires occurring during two consecutive record-setting years in the eastern Cascade Mountains of Washington State. Despite much of the area having been burned after an extended period of fire…
Fire Effects and Fire Ecology, Fire History, Fuels and Fuel Treatments, Restoration and Hazardous Fuel Reduction
Publication Type: Journal Article
Mapping Delayed Canopy Loss and Durable Fire Refugia for the 2020 Wildfires in Washington State Using Multiple Sensors
Year: 2025
Fire refugia are unburned and low severity patches within wildfires that contribute heterogeneity that is important to retaining biodiversity and regenerating forest following fire. With increasingly intense and frequent wildfires in the Pacific Northwest, fire refugia are important for re-establishing populations sensitive to fire and maintaining resilience to future disturbances. Mapping fire refugia and delayed canopy loss is useful for understanding patterns in their distribution. The increasing abundance of satellite data and advanced analysis platforms offer the potential to map fire…
Publication Type: Journal Article
Planted seedling regeneration using gap-based silviculture without herbicide in a wildfire-impacted forest of the Sierra Nevada
Year: 2025
Gap-based silviculture, which we define as the creation and maintenance of multi-aged stands through the periodic harvesting of discrete canopy gaps, provides a potential mechanism for converting previously high-graded stands into more heterogeneous, multi-aged structures. An advantage of small canopy gaps, relative to even-aged regeneration methods, is their potential to suppress shrub competition while allowing seedling growth without the use of herbicides or other means of managing shrub competition. While this idea has been proposed in principle, it has not been tested. The objective of…
Publication Type: Journal Article
A Systematic Review of Trends and Methodologies in Research on the Effects of Wildfires on the Avifauna in Temperate Forests
Year: 2025
Perceptions of the relationships between forest ecosystems and wildfires have evolved. The ecological role of wildfires is now recognised as essential for maintaining the functionality of fire-adapted forests. Although research on the impact of fire on fauna has grown notably, there is a lack of consensus on its global effects due to the variable responses of faunal communities across taxa. This review provides a bibliometric synthesis of wildfires and their impact on avifauna in temperate forests. It identifies patterns and gaps in research methodologies and offers recommendations for future…
Publication Type: Journal Article
Prescribed fire, managed burning, and previous wildfires reduce the severity of a southwestern US gigafire
Year: 2025
In many parts of the western United States, wildfires are becoming larger and more severe, threatening the persistence of forest ecosystems. Understanding the ways in which management activities such as prescribed fire and managed wildfire can mitigate fire severity is essential for developing effective forest conservation strategies. We evaluated the effects of previous fuels reduction treatments, including prescribed fire and wildfire managed for resource benefit, and other wildfires on the burn severity of the 2022 Black Fire in southwestern New Mexico, USA. The Black Fire burned over 131,…
Publication Type: Journal Article
Comparing modeled soil temperature and moisture dynamics during prescribed fires, slash-pile burns and wildfires
Year: 2025
Background: Wildfires, prescribed fires and slash-pile burns are disturbances that occur in many terrestrial ecosystems. Such fires produce variable surface heat fluxes causing a spectrum of effects on soil, such as seed mortality, nutrient loss, changes in microbial activity and water repellency. Accurately modeling soil heating is vital to predicting these second-order fire effects. The process-based Massman HMV (Heat–Moisture–Vapor) model incorporates soil water evaporation, heat transport and water vapor movement, and captures the observed rapid evaporation of soil moisture. Aims:…
Publication Type: Journal Article
Mobile radar provides insights into hydrologic responses in burn areas
Year: 2025
Background. Wildfires often occur in mountainous terrain, regions that pose substantial challenges to operational meteorological and hydrologic observing networks. Aims. A mobile, postfire hydrometeorological observatory comprising remote-sensing and in situ instrumentation was developed and deployed in a burnt area to provide unique insights into rainfall-induced post-fire hazards. Methods. Mobile radar-based rainfall estimates were produced throughout the burn area at 75-m resolution and compared with rain gauge accumulations and basin response variables. Key results. The mobile radar was…
Publication Type: Journal Article
Centering socioecological connections to collaboratively manage post- fire vegetation shifts
Year: 2024
Climate change is altering fire regimes and post-fire conditions, contributing to relatively rapid transformation of landscapes across the western US. Studies are increasingly documenting post-fire vegetation transitions, particularly from forest to non- forest conditions or from sagebrush to invasive annual grasses. The prevalence of climate-driven, post-fire vegetation transitions is likely to increase…
Publication Type: Journal Article
Fire intensity effects on serotinous seed survival
Year: 2024
BackgroundIn fire-prone environments, some species store their seeds in canopy cones (serotiny), which provides seeds protection from the passage of fire before stimulating seed release. However, the capacity of serotinous cones to protect seeds under high intensity fire is uncertain. Beyond simply “high” versus “low” fire intensity or severity, we must understand the influence of the specific characteristics of fire intensity—heat flux, exposure duration, and their dynamics—on serotinous seed survival. In this study, we tested serotinous seed survival under transient levels of…
Publication Type: Journal Article
Disentangling drivers of annual grass invasion: Abiotic susceptibility vs. fire-induced conversion to cheatgrass dominance in the sagebrush biome
Year: 2024
Invasive annual grasses are often facilitated by fire, yet they can become ecologically dominant in susceptible locations even in the absence of fire. We used an extensive vegetation plot database to model susceptibility to the invasive annual grass cheatgrass (Bromus tectorum L.) in the sagebrush biome as a function of climate and soil water availability variables. We built random forest models predicting cheatgrass presence or dominance (>15 % relative cover) under unburned (37,219 plots) and burned conditions (6340 plots). We mapped predicted probability of cheatgrass…
Publication Type: Journal Article
Molecular shifts in dissolved organic matter along a burn severity continuum for common land cover types in the Pacific Northwest, USA
Year: 2024
Increasing wildfire severity is of growing concern in the western United States, with consequences for the production, composition, and mobilization of dissolved organic matter (DOM) from terrestrial to aquatic systems. Our current understanding of wildfire impacted DOM (often termed pyrogenic DOM) composition is largely built from temperature-based studies that can be difficult to extrapolate to field conditions, which are often defined by ‘burn severity’, or the post-wildfire impact observed at a site. Thus, burn severity can encapsulate a broader range of fire and environmental conditions…
Publication Type: Journal Article
Patterns, drivers, and implications of postfire delayed tree mortality in temperate conifer forests of the western United States
Year: 2024
Conifer forest resilience may be threatened by increasing wildfire activity and compound disturbances in western North America. Fire refugia enhance forest resilience, yet may decline over time due to delayed mortality—a process that remains poorly understood at landscape and regional scales. To address this uncertainty, we used high-resolution satellite imagery (5-m pixel) to map and quantify delayed mortality of conifer tree cover between 1 and 5 years postfire, across 30 large wildfires that burned within three montane ecoregions in the western United States. We used statistical models to…
Publication Type: Journal Article
Western larch regeneration more sensitive to wildfire-related factors than seasonal climate variability
Year: 2024
To understand the impacts of changing climate and wildfire activity on conifer forests, we studied how wildfire and post-fire seasonal climate conditions influence western larch (Larix occidentalis) regeneration across its range in the northwestern US. We destructively sampled 1651 seedlings from 57 sites across 32 fires that burned at moderate or high severity between 2000 and 2015; sites were within 100 m of reproductively mature western larch. Using dendrochronological methods, we estimated germination years of seedlings to calculate annual recruitment rates. We used boosted…
Publication Type: Journal Article
Montane springs provide regeneration refugia after high-severity wildfire
Year: 2024
In the mountainous regions of the Western United States, increasing wildfire activity and climate change are putting forests at risk of regeneration failure and conversion to non-forests. During periods with unfavorable climatic conditions, locations that are suitable for post-fire tree regeneration (regeneration refugia) may be essential for forest recovery. These refugia could provide scattered islands of recovering forest from which broader forest recovery may be facilitated. Spring ecosystems provide cool and wet microsites relative to the surrounding landscape and may act as regeneration…
Publication Type: Journal Article
A Review of the Occurrence and Causes for Wildfires and Their Impacts on the Geoenvironment
Year: 2024
Wildfires have short- and long-term impacts on the geoenvironment, including the changes to biogeochemical and mechanical properties of soils, landfill stability, surface- and groundwater, air pollution, and vegetation. Climate change has increased the extent and severity of wildfires across the world. Simultaneously, anthropogenic activities—through the expansion of urban areas into wildlands, abandonment of rural practices, and accidental or intentional fire-inception activities—are also responsible for a majority of fires. This paper provides an overall review and critical appraisal of…
Climate Change and Fire, Fire Effects and Fire Ecology, Smoke and Air Quality, Soils and Woody Debris
Publication Type: Journal Article
A laboratory-scale simulation framework for analysing wildfire hydrologic and water quality effects
Year: 2024
Background: Wildfires can significantly impact water quality and supply. However logistical difficulties and high variability in in situ data collection have limited previous analyses.Aims: We simulated wildfire and rainfall effects at varying terrain slopes in a controlled setting to isolate driver-response relationships.Methods: Custom-designed laboratory-scale burn and rainfall simulators were applied to 154 soil samples, measuring subsequent runoff and constituent responses. Simulated conditions included low, moderate, and high burn intensities (~100–600°C); 10…
Publication Type: Journal Article
Nonstructural carbohydrates explain post-fire tree mortality and recovery patterns
Year: 2024
Trees use nonstructural carbohydrates (NSCs) to support many functions, including recovery from disturbances. However, NSC’s importance for recovery following fire and whether NSC depletion contributes to post-fire delayed mortality are largely unknown. We investigated how fire affects NSCs based on fire-caused injury from a prescribed fire in a young Pinus ponderosa (Lawson & C. Lawson) stand. We assessed crown injury (needle scorch and bud kill) and measured NSCs of needles and inner bark (i.e., secondary phloem) of branches and main stems of trees subject to fire and at an…
Publication Type: Journal Article
Moderating effects of past wildfire on reburn severity depend on climate and initial severity in Western US forests
Year: 2024
Rising global fire activity is increasing the prevalence of repeated short-interval burning (reburning) in forests worldwide. In forests that historically experienced frequent-fire regimes, high-severity fire exacerbates the severity of subsequent fires by increasing prevalence of shrubs and/or by creating drier understory conditions. Low- to moderate-severity fire, in contrast, can moderate future fire behavior by reducing fuel loads. The extent to which previous fires moderate future fire severity will powerfully affect fire-prone forest ecosystem trajectories over the next century. Further…
Publication Type: Journal Article