Research Database
Displaying 61 - 80 of 320
Moderating effects of past wildfire on reburn severity depend on climate and initial severity in Western US forests
Year: 2024
Rising global fire activity is increasing the prevalence of repeated short-interval burning (reburning) in forests worldwide. In forests that historically experienced frequent-fire regimes, high-severity fire exacerbates the severity of subsequent fires by increasing prevalence of shrubs and/or by creating drier understory conditions. Low- to moderate-severity fire, in contrast, can moderate future fire behavior by reducing fuel loads. The extent to which previous fires moderate future fire severity will powerfully affect fire-prone forest ecosystem trajectories over the next century. Further…
Publication Type: Journal Article
Before the fire: predicting burn severity and potential post-fire debris-flow hazards to conservation populations of the Colorado River Cutthroat Trout (Oncorhynchus clarkii pleuriticus)
Year: 2024
Background: Colorado River Cutthroat Trout (CRCT; Oncorhynchus clarkii pleuriticus) conservation populations may be at risk from wildfire and post-fire debris flows hazards. Aim: To predict burn severity and potential post-fire debris flow hazard classifications to CRCT conservation populations before wildfires occur. Methods: We used remote sensing, spatial analyses, and machine learning to model 28 wildfire incidents (2016–2020) and spatially predict burn severity from pre-wildfire environmental factors to evaluate the likelihood…
Publication Type: Journal Article
Five social and ethical considerations for using wildfire visualizations as a communication tool
Year: 2024
BackgroundIncreased use of visualizations as wildfire communication tools with public and professional audiences—particularly 3D videos and virtual or augmented reality—invites discussion of their ethical use in varied social and temporal contexts. Existing studies focus on the use of such visualizations prior to fire events and commonly use hypothetical scenarios intended to motivate proactive mitigation or explore decision-making, overlooking the insights that those who have already experienced fire events can provide to improve user engagement and understanding of wildfire…
Publication Type: Journal Article
A model for rapid PM2.5 exposure estimates in wildfire conditions using routinely available data: rapidfire v0.1.3
Year: 2024
Urban smoke exposure events from large wildfires have become increasingly common in California and throughout the western United States. The ability to study the impacts of high smoke aerosol exposures from these events on the public is limited by the availability of high-quality, spatially resolved estimates of aerosol concentrations. Methods for assigning aerosol exposure often employ multiple data sets that are time-consuming to create and difficult to reproduce. As these events have gone from occasional to nearly annual in frequency, the need for rapid smoke exposure assessments has…
Publication Type: Journal Article
Tamm review: A meta-analysis of thinning, prescribed fire, and wildfire effects on subsequent wildfire severity in conifer dominated forests of the Western US
Year: 2024
Increased understanding of how mechanical thinning, prescribed burning, and wildfire affect subsequent wildfire severity is urgently needed as people and forests face a growing wildfire crisis. In response, we reviewed scientific literature for the US West and completed a meta-analysis that answered three questions: (1) How much do treatments reduce wildfire severity within treated areas? (2) How do the effects vary with treatment type, treatment age, and forest type? (3) How does fire weather moderate the effects of treatments? We found overwhelming evidence that mechanical thinning with…
Publication Type: Journal Article
Informing proactive wildfire management that benefits vulnerable communities and ecological values
Year: 2024
- In response to mounting wildfire risks, land managers across the country will need to dramatically increase proactive wildfire management (e.g. fuel and forest health treatments). While human communities vary widely in their vulnerability to the impacts of fire, these discrepancies have rarely informed prioritizations for wildfire mitigation treatments. The ecological values and ecosystem services provided by forests have also typically been secondary considerations.
- To identify locations across the conterminous US where proactive wildfire management is likely to be effective…
Publication Type: Journal Article
Expanding our understanding of nitrogen dynamics after fire: how severe fire and aridity reduce ecosystem nitrogen retention
Year: 2024
Fires release large pulses of nitrogen (N), which can be taken up by recovering plants and microbes or exported to streams where it can threaten water quality. The amount of N exported depends on the balance between N mineralisation and rates of N uptake after fire. Burn severity and soil moisture interact to drive these rates, but their effects can be difficult to predict. To understand how soil moisture and burn severity influence post-fire N cycling and retention in a dryland watershed, we quantified changes in plant biomass, plant N content, soil microbial biomass, inorganic N pools, and…
Publication Type: Journal Article
A fast spectral recovery does not necessarily indicate post-fire forest recovery
Year: 2024
BackgroundClimate change has increased wildfire activity in the western USA and limited the capacity for forests to recover post-fire, especially in areas burned at high severity. Land managers urgently need a better understanding of the spatiotemporal variability in natural post-fire forest recovery to plan and implement active recovery projects. In burned areas, post-fire “spectral recovery”, determined by examining the trajectory of multispectral indices (e.g., normalized burn ratio) over time, generally corresponds with recovery of multiple post-fire vegetation types, including trees and…
Publication Type: Journal Article
Probabilistic Forecasting of Lightning Strikes over the Continental USA and Alaska: Model Development and Verification
Year: 2024
Lightning is responsible for the most area annually burned by wildfires in the extratropical region of the Northern Hemisphere. Hence, predicting the occurrence of wildfires requires reliable forecasting of the chance of cloud-to-ground lightning strikes during storms. Here, we describe the development and verification of a probabilistic lightning-strike algorithm running on a uniform 20 km grid over the continental USA and Alaska. This is the first and only high-resolution lightning forecasting model for North America derived from 29-year-long data records. The algorithm consists of a large…
Publication Type: Journal Article
Few large or many small fires: Using spatial scaling of severe fire to quantify effects of fire-size distribution shifts
Year: 2024
As wildfire activity increases and fire-size distributions potentially shift in many forested regions worldwide, anticipating the spatial patterns of burn severity expected with future fire activity is critical for ecological understanding and informing management and policy. Because spatial patterns of burn severity are influenced by a complex mixture of drivers, they remain difficult to predict for any given burned landscape. At broader extents, however, spatial scaling relationships relating high-severity patch size and shape to overall fire size, when combined with scenarios regarding…
Publication Type: Journal Article
When do contemporary wildfires restore forest structures in the Sierra Nevada?
Year: 2024
Background: Following a century of fire suppression in western North America, managers use forest restoration treatments to reduce fuel loads and reintroduce key processes like fire. However, annual area burned by wildfire frequently outpaces the application of restoration treatments. As this trend continues under climate change, it is essential that we understand the effects of contemporary wildfires on forest ecosystems and the extent to which post-fire structures are meeting common forest restoration objectives. In this study, we used airborne lidar to evaluate fire effects across yellow…
Publication Type: Journal Article
Blending Indigenous and western science: Quantifying cultural burning impacts in Karuk Aboriginal Territory
Year: 2024
The combined effects of Indigenous fire stewardship and lightning ignitions shaped historical fire regimes, landscape patterns, and available resources in many ecosystems globally. The resulting fire regimes created complex fire–vegetation dynamics that were further influenced by biophysical setting, disturbance history, and climate. While there is increasing recognition of Indigenous fire stewardship among western scientists and managers, the extent and purpose of cultural burning is generally absent from the landscape–fire modeling literature and our understanding of ecosystem processes and…
Publication Type: Journal Article
A fire-use decision model to improve the United States’ wildfire management and support climate change adaptation
Year: 2024
The US faces multiple challenges in facilitating the safe, effective, and proactive use of fire as a landscape management tool. This intentional fire use exposes deeply ingrained communication challenges and distinct but overlapping strategies of prescribed fire, cultural burning, and managed wildfire. We argue for a new conceptual model that is organized around ecological conditions, capacity to act, and motivation to use fire and can integrate and expand intentional fire use as a tool. This result emerges from more considered collaboration and communication of values and needs to address…
Publication Type: Journal Article
Fire severity drives understory community dynamics and the recovery of culturally significant plants
Year: 2024
Anthropogenic influences are altering fire regimes worldwide, resulting in an increase in the size and severity of wildfires. Simultaneously, throughout western North America, there is increasing recognition of the important role of Indigenous fire stewardship in shaping historical fire regimes and fire-adapted ecosystems. However, there is limited understanding of how ecosystems are affected by or recover from contemporary “megafires,” particularly in terms of understory plant communities that are critical to both biodiversity and Indigenous cultures. To address this gap, our collaborative…
Publication Type: Journal Article
Human driven climate change increased the likelihood of the 2023 record area burned in Canada
Year: 2024
In 2023, wildfires burned 15 million hectares in Canada, more than doubling the previous record. These wildfires caused a record number of evacuations, unprecedented air quality impacts across Canada and the northeastern United States, and substantial strain on fire management resources. Using climate models, we show that human-induced climate change significantly increased the likelihood of area burned at least as large as in 2023 across most of Canada, with more than two-fold increases in the east and southwest. The long fire season was more than five times as likely and the large areas…
Publication Type: Journal Article
Generating fuel consumption maps on prescribed fire experiments from airborne laser scanning
Year: 2024
Background. Characterisation of fuel consumption provides critical insights into fire behaviour, effects, and emissions. Stand-replacing prescribed fire experiments in central Utah offered an opportunity to generate consumption estimates in coordination with other research efforts. Aims. We sought to generate fuel consumption maps using pre- and post-fire airborne laser scanning (ALS) and ground measurements and to test the spatial transferability of the ALSderived fuel models. Methods. Using random forest (RF), we empirically modelled fuel load and estimated consumption from pre-…
Publication Type: Journal Article
Severity of a megafire reduced by interactions of wildland fire suppression operations and previous burns
Year: 2024
Burned area and proportion of high severity fire have been increasing in the western USA, and reducing wildfire severity with fuel treatments or other means is key for maintaining fire-prone dry forests and avoiding fire-catalyzed forest loss. Despite the unprecedented scope of firefighting operations in recent years, their contribution to patterns of wildfire severity is rarely quantified. Here we investigate how wildland fire suppression operations and past fire severity interacted to affect severity patterns of the northern third of the 374 000 ha Dixie Fire, the largest single fire in…
Publication Type: Journal Article
Using focus groups for knowledge sharing: Tracking emerging pandemic impacts on USFS wildland fire operations
Year: 2024
In early 2020 the US Forest Service (USFS) recognized the need to gather real-time information from its wildland fire management personnel about their challenges and adaptations during the unfolding COVID-19 pandemic. The USFS conducted 194 virtual focus groups to address these concerns, over 32 weeks from March 2020 to October 2020. This management effort provided an opportunity for an innovative practice-based research study. Here, we outline a novel methodological approach (weekly, iterative focus groups, with two-way communication between USFS staff and leadership), which culminated in a…
Publication Type: Journal Article
Predicting daily firefighting personnel deployment trends in the western United States
Year: 2024
Projected increases in wildfire frequency, size, and severity may further stress already scarce firefighting resources in the western United States that are in high demand. Machine learning is a promising field with the ability to model firefighting resource usage without compromising dataset size or complexity. In this study, the Categorical Boosting (CatBoost) model was used with historical (2012-2020) wildfire data to train three models that calculate predicted daily counts of 1) total assigned personnel (total personnel), 2) assigned personnel that are at the fire (ground personnel), and…
Publication Type: Journal Article
Abiotic Factors Modify Ponderosa Pine Regeneration Outcomes After High-Severity Fire
Year: 2024
Large high-severity burn patches are increasingly common in southwestern US dry conifer forests. Seed-obligate conifers often fail to quickly regenerate large patches because their seeds rarely travel the distances required to reach core patch area. Abiotic factors may further alter the distance seeds can travel to regenerate a patch, which would change expected post-fire regeneration patterns. We used the presence and density of ponderosa pine regeneration as a proxy for seed dispersal to quantify the effect of abiotic factors on seed dispersal into high-severity patches. We established 45…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 2
- 3
- 4
- 5
- 6
- …
- Next page
- Last page