Research Database
Displaying 61 - 80 of 170
Changes in wildfire occurrence and risk to homes from 1990 through 2019 in the Southern Rocky Mountains, USA
Year: 2023
Wildfires and housing development have increased since the 1990s, presenting unique challenges for wildfire management. However, it is unclear how the relative influences of housing growth and changing wildfire occurrence have altered risk to homes, or the potential for wildfire to threaten homes. We used a random forests model to predict burn probability in relation to weather variables at 1-km resolution and monthly intervals from 1990 through 2019 in the Southern Rocky Mountains ecoregion. We quantified risk by combining the predicted burn probabilities with decadal housing density. We…
Publication Type: Journal Article
Quantifying burned area of wildfires in the western United States from polar-orbiting and geostationary satellite active-fire detections
Year: 2023
Background: Accurately estimating burned area from satellites is key to improving biomass burning emission models, studying fire evolution and assessing environmental impacts. Previous studies have found that current methods for estimating burned area of fires from satellite active-fire data do not always provide an accurate estimate. Aims and methods: In this work, we develop a novel algorithm to estimate hourly accumulated burned area based on the area from boundaries of non-convex polygons containing the accumulated Visible Infrared Imaging Radiometer Suite (VIIRS) active-fire detections.…
Publication Type: Journal Article
How Does Fire Suppression Alter the Wildfire Regime? A Systematic Review
Year: 2023
Fire suppression has become a fundamental approach for shaping contemporary wildfire regimes. However, a growing body of research suggests that aggressive fire suppression can increase high-intensity wildfires, creating the wildfire paradox. Whether the strategy always triggers the paradox remains a topic of ongoing debate. The role of fire suppression in altering wildfire regimes in diverse socio-ecological systems and associated research designs demands a deeper understanding. To reconcile these controversies and synthesize the existing knowledge, a systematic review has been conducted to…
Publication Type: Journal Article
The Power Grid/Wildfire Nexus: Using GIS and Satellite Remote Sensing to Identify Vulnerabilities
Year: 2023
The effects of wildfire on the power grid are a recurring concern for utility companies who need reliable information about where to prioritize infrastructure hardening. Though there are existing data layers that provide measures of burn probability, these models predominately consider long-term climate variables, which are not helpful when analyzing current season trends. Utility companies need data that are temporally and locally relevant. To determine the primary drivers of burn probability relative to power grid vulnerability, this study assessed potential wildfire drivers that are both…
Publication Type: Journal Article
High-severity burned area and proportion exceed historic conditions in Sierra Nevada, California, and adjacent ranges
Year: 2023
Although fire is a fundamental ecological process in western North American forests, climate warming and accumulating forest fuels due to fire suppression have led to wildfires that burn at high severity across larger fractions of their footprint than were historically typical. These trends have spiked upwards in recent years and are particularly pronounced in the Sierra Nevada–Southern Cascades ecoregion of California, USA, and neighboring states. We assessed annual area burned (AAB) and percentage of area burned at high and low-to-moderate severity for seven major forest types in this…
Publication Type: Journal Article
Different approaches make comparing studies of burn severity challenging: a review of methods used to link remotely sensed data with the Composite Burn Index
Year: 2023
The Composite Burn Index (CBI) is commonly linked to remotely sensed data to understand spatial and temporal patterns of burn severity. However, a comprehensive understanding of the tradeoffs between different methods used to model CBI with remotely sensed data is lacking. To help understand the current state of the science, provide a blueprint towards conducting broad- scale meta-analyses, and identify key decision points and potential rationale, we conducted a review of studies that linked remotely sensed data to continuous estimates of burn severity measured with the CBI and related…
Publication Type: Journal Article
Abrupt, climate-induced increase in wildfires in British Columbia since the mid-2000s
Year: 2023
In the province of British Columbia, Canada, four of the most severe wildfire seasons of the last century occurred in the past 7 years: 2017, 2018, 2021, and 2023. To investigate trends in wildfire activity and fire-conducive climate, we conducted an analysis of mapped wildfire perimeters and annual climate data for the period of 1919–2021. Results show that after a century-long decline, fire activity increased from 2005 onwards, coinciding with a sharp reversal in the wetting trend of the 20th century. Even as precipitation levels remain high, moisture deficits have increased due to rapid…
Publication Type: Journal Article
Deterioration of air quality associated with the 2020 US wildfires
Year: 2023
The wildfires of August and September 2020 in the western part of the United States were characterized by an unparalleled duration and wide geographical coverage. A particular consequence of massive wildfires includes serious health effects due to short and long-term exposure to poor air quality. Using a variety of data sources including aerosol optical depth (AOD) and ultraviolet aerosol index (UVAI), obtained with the Moderate-Resolution Imaging Spectroradiometer (MODIS), Multi-Angle Implementation of Atmospheric Correction (MAIAC) and Tropospheric Monitoring Instrument (TROPOMI), combined…
Publication Type: Journal Article
Fire-driven animal evolution in the Pyrocene
Year: 2023
Fire regimes are a major agent of evolution in terrestrial animals. Changing fire regimes and the capacity for rapid evolution in wild animal populations suggests the potential for rapid, fire-driven adaptive animal evolution in the Pyrocene. Fire drives multiple modes of evolutionary change, including stabilizing, directional, disruptive, and fluctuating selection, and can strongly influence gene flow and genetic drift. Ongoing and future research in fire-driven animal evolution will benefit from further development of generalizable hypotheses, studies conducted in highly responsive taxa,…
Publication Type: Journal Article
Less fuel for the next fire? Short-interval fire delays forest recovery and interacting drivers amplify effects
Year: 2023
As 21st-century climate and disturbance dynamics depart from historic baselines, ecosystem resilience is uncertain. Multiple drivers are changing simultaneously, and interactions among drivers could amplify ecosystem vulnerability to change. Subalpine forests in Greater Yellowstone (Northern Rocky Mountains, USA) were historically resilient to infrequent (100–300 year), severe fire. We sampled paired short-interval (<30-year) and long-interval (>125-year) post-fire plots most recently burned between 1988 and 2018 to address two questions: (1) How do short-interval fire, climate,…
Publication Type: Journal Article
Evidence for multi-decadal fuel buildup in a large California wildfire from smoke radiocarbon measurements
Year: 2023
In recent decades, there has been a significant increase in annual area burned in California's Sierra Nevada mountains. This rise in fire activity has prompted the need to understand how historical forest management practices affect fuel composition and emissions. Here we examined the total carbon (TC) concentration and radiocarbon abundance (Δ14C) of particulate matter (PM) emitted by the KNP Complex Fire, which occurred during California's 2021 wildfire season and affected several groves of giant sequoia trees in the southern Sierra Nevada. During a 26 h sampling period, we measured…
Publication Type: Journal Article
Refuge-yeah or refuge-nah? Predicting locations of forest resistance and recruitment in a fiery world
Year: 2023
Climate warming, land use change, and altered fire regimes are driving ecological transformations that can have critical effects on Earth's biota. Fire refugia—locations that are burned less frequently or severely than their surroundings—may act as sites of relative stability during this period of rapid change by being resistant to fire and supporting post-fire recovery in adjacent areas. Because of their value to forest ecosystem persistence, there is an urgent need to anticipate where refugia are most likely to be found and where they align with environmental conditions that support post-…
Publication Type: Journal Article
Metrics and Considerations for Evaluating How Forest Treatments Alter Wildfire Behavior and Effects
Year: 2023
The influence of forest treatments on wildfire effects is challenging to interpret. This is, in part, because the impact forest treatments have on wildfire can be slight and variable across many factors. Effectiveness of a treatment also depends on the metric considered. We present and define human–fire interaction, fire behavior, and ecological metrics of forest treatment effects on wildfire and discuss important considerations and recommendations for evaluating treatments. We demonstrate these concepts using a case study from the Cameron Peak Fire in Colorado, USA. Pre-fire forest…
Publication Type: Journal Article
The century-long shadow of fire exclusion: Historical data reveal early and lasting effects of fire regime change on contemporary forest composition
Year: 2023
Historical logging practices and fire exclusion have reduced the proportion of pine in mixed-conifer forests of the western United States. To better understand pine’s decline, we investigate the impact of historical logging on the tree regeneration layer and subsequent stand development over almost a century of fire exclusion. We use a unique dataset derived from contemporary (∼2016) remeasurement of 440 historical quadrats (∼4m2) in the central Sierra Nevada, California, in which overstory trees, tree regeneration, and microsite conditions were measured and mapped both before and after…
Publication Type: Journal Article
Using soil moisture information to better understand and predict wildfire danger: a review of recent developments and outstanding questions
Year: 2023
Soil moisture conditions are represented in fire danger rating systems mainly through simple drought indices based on meteorological variables, even though better sources of soil moisture information are increasingly available. This review summarises a growing body of evidence indicating that greater use of in situ, remotely sensed, and modelled soil moisture information in fire danger rating systems could lead to better estimates of dynamic live and dead herbaceous fuel loads, more accurate live and dead fuel moisture predictions, earlier warning of wildfire danger, and better forecasts of…
Publication Type: Journal Article
Rapid Growth of Large Forest Fires Drives the Exponential Response of Annual Forest-Fire Area to Aridity in the Western United States
Year: 2022
Annual forest area burned (AFAB) in the western United States (US) has increased as a positive exponential function of rising aridity in recent decades. This non-linear response has important implications for AFAB in a changing climate, yet the cause of the exponential AFAB-aridity relationship has not been given rigorous attention. We investigated the exponential AFAB-aridity relationship in western US forests using a new 1984–2019 database of fire events and 2001–2020 satellite-based records of daily fire growth. While forest-fire frequency and duration grow linearly with aridity, the…
Publication Type: Journal Article
Human Fire Use and Management: A Global Database of Anthropogenic Fire Impacts for Modelling
Year: 2022
Human use and management of fire in landscapes have a long history and vary globally in purpose and impact. Existing local research on how people use and manage fire is fragmented across multiple disciplines and is diverse in methods of data collection and analysis. If progress is to be made on systematic understanding of human fire use and management globally, so that it might be better represented in dynamic global vegetation models, for example, we need improved synthesis of existing local research and literature. The database of anthropogenic fire impacts (DAFI) presented here is a…
Publication Type: Journal Article
Contemporary (1984–2020) fire history metrics for the conterminous United States and ecoregional differences by land ownership
Year: 2022
Background: Remotely sensed burned area products are critical to support fire modelling, policy, and management but often require further processing before use. Aim: We calculated fire history metrics from the Landsat Burned Area Product (1984–2020) across the conterminous U.S. (CONUS) including (1) fire frequency, (2) time since last burn (TSLB), (3) year of last burn, (4) longest fire-free interval, (5) average fire interval length, and (6) contemporary fire return interval (cFRI). Methods: Metrics were summarised by ecoregion and land ownership, and related to historical and cheatgrass…
Publication Type: Journal Article
Evaluating Satellite Fire Detection Products and an Ensemble Approach for Estimating Burned Area in the United States
Year: 2022
Fire location and burning area are essential parameters for estimating fire emissions. However, ground-based fire data (such as fire perimeters from incident reports) are often not available with the timeliness required for real-time forecasting. Fire detection products derived from satellite instruments such as the GOES-16 Advanced Baseline Imager or MODIS, on the other hand, are available in near real-time. Using a ground fire dataset of 2699 fires during 2017–2019, we fit a series of linear models that use multiple satellite fire detection products (HMS aggregate fire product, GOES-16,…
Publication Type: Journal Article
Extreme Winds Alter Influence of Fuels and Topography on Megafire Burn Severity in Seasonal Temperate Rainforests under Record Fuel Aridity
Year: 2022
Nearly 0.8 million hectares of land were burned in the North American Pacific Northwest (PNW) over two weeks under record-breaking fuel aridity and winds during the extraordinary 2020 fire season, representing a rare example of megafires in forests west of the Cascade Mountains. We quantified the relative influence of weather, vegetation, and topography on patterns of high burn severity (>75% tree mortality) among five synchronous megafires in the western Cascade Mountains. Despite the conventional wisdom in climate-limited fire regimes that regional drivers (e.g., extreme aridity, and…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 2
- 3
- 4
- 5
- 6
- …
- Next page
- Last page