Research Database
Displaying 1 - 9 of 9
Wildfire controls on land surface properties in mixed conifer and ponderosa pine forests of Sierra Nevada and Klamath mountains, Western US
Year: 2022
This study examines the post-fire biogeophysical and biochemical dynamics after several high-severity wildfires that occurred in mixed conifer and ponderosa pine forest types in the Sierra Nevada and Klamath Mountains regions between 1986 and 2017. We found a consistent pattern of reduced leaf area index (LAI) in the first year after fire, followed by gradual recovery over the subsequent 25 years. Recovery rate varied between forest types. For example, average summer LAI for 16-25 years post-fire was 88% of the pre-fire average for mixed conifers in the Sierra Nevada, 64% for ponderosa pine…
Publication Type: Journal Article
Rapid Growth of Large Forest Fires Drives the Exponential Response of Annual Forest-Fire Area to Aridity in the Western United States
Year: 2022
Annual forest area burned (AFAB) in the western United States (US) has increased as a positive exponential function of rising aridity in recent decades. This non-linear response has important implications for AFAB in a changing climate, yet the cause of the exponential AFAB-aridity relationship has not been given rigorous attention. We investigated the exponential AFAB-aridity relationship in western US forests using a new 1984–2019 database of fire events and 2001–2020 satellite-based records of daily fire growth. While forest-fire frequency and duration grow linearly with aridity, the…
Publication Type: Journal Article
Open Scientific Data: Country-level fire perimeter datasets (2001–2021)
Year: 2022
Fire activity is changing across many areas of the globe. Understanding how social and ecological systems respond to fire is an important topic for the coming century. But many countries do not have accessible fire history data. There are several satellite-based products available as gridded data, but these can be difficult to access and use, and require significant computational resources and time to convert into a usable product for a specific area of interest. We developed an open source software package called Fire Event Delineation for python (FIREDpy) which automatically downloads and…
Publication Type: Journal Article
Contemporary (1984–2020) fire history metrics for the conterminous United States and ecoregional differences by land ownership
Year: 2022
Background: Remotely sensed burned area products are critical to support fire modelling, policy, and management but often require further processing before use. Aim: We calculated fire history metrics from the Landsat Burned Area Product (1984–2020) across the conterminous U.S. (CONUS) including (1) fire frequency, (2) time since last burn (TSLB), (3) year of last burn, (4) longest fire-free interval, (5) average fire interval length, and (6) contemporary fire return interval (cFRI). Methods: Metrics were summarised by ecoregion and land ownership, and related to historical and cheatgrass…
Publication Type: Journal Article
Modern Pyromes: Biogeographical Patterns of Fire Characteristics across the Contiguous United States
Year: 2022
In recent decades, wildfires in many areas of the United States (U.S.) have become larger and more frequent with increasing anthropogenic pressure, including interactions between climate, land-use change, and human ignitions. We aimed to characterize the spatiotemporal patterns of contemporary fire characteristics across the contiguous United States (CONUS). We derived fire variables based on frequency, fire radiative power (FRP), event size, burned area, and season length from satellite-derived fire products and a government records database on a 50 km grid (1984–2020). We used k-means…
Publication Type: Journal Article
Evaluating Satellite Fire Detection Products and an Ensemble Approach for Estimating Burned Area in the United States
Year: 2022
Fire location and burning area are essential parameters for estimating fire emissions. However, ground-based fire data (such as fire perimeters from incident reports) are often not available with the timeliness required for real-time forecasting. Fire detection products derived from satellite instruments such as the GOES-16 Advanced Baseline Imager or MODIS, on the other hand, are available in near real-time. Using a ground fire dataset of 2699 fires during 2017–2019, we fit a series of linear models that use multiple satellite fire detection products (HMS aggregate fire product, GOES-16,…
Publication Type: Journal Article
A geographic strategy for cross-jurisdictional, proactive management of invasive annual grasses in Oregon
Year: 2022
On the Ground: Invasive annual grasses pose a widespread threat to western rangelands, and a strategic and proactive approach is needed to tackle this problem. Oregon partners used new spatial data to develop a geographic strategy for management of invasive annual grasses at landscape scales across jurisdictional boundaries. The geographic strategy considers annual and perennial herbaceous cover along with site resilience and resistance in categorizing areas into intact core, transitioning, and degraded areas. The geographic strategy provides 1) a conceptual framework for proactive management…
Publication Type: Journal Article
Ventenata ( Ventenata dubia ) Response to Grazing and Prescribed Fire on the Pacific Northwest Bunchgrass Prairie
Year: 2022
The exotic annual grass ventenata ( Ventenata dubia L.) is raising concern as it rapidly invades multiple ecosystem types within the United States, including sagebrush steppe, ponderosa pine forests, woodlands, and much of the Palouse and Pacific Northwest Bunchgrass Prairie (PNB). Despite increasing attention, little is known about the invasion dynamics of ventenata, especially its response to disturbances such as grazing and fire. In this study, we examined how cattle grazing and prescribed fire affect the abundance (standing crop, cover, frequency, and density) of ventenata and other plant…
Publication Type: Journal Article
Strategic Partnerships to Leverage Small Wins for Fine Fuels Management
Year: 2022
Rangeland wildfire is a wicked problem that cuts across a mosaic of public and private rangelands in the western United States and countless countries worldwide. Fine fuel accumulation in these ecosystems contributes to large-scale wildfires and undermines plant communities’ resistance to invasive annual grasses and resilience to disturbances such as fire. Yet it can be difficult to implement fuels management practices, such as grazing, in socially and politically complex contexts such as federally managed rangelands in the United States. In this Research-Partnership Highlight, we argue that…
Publication Type: Journal Article