Research Database
Displaying 1 - 5 of 5
Small-scale fire refugia increase soil bacterial and fungal richness and increase community cohesion nine years after fire
Year: 2025
Small-scale variation in wildfire behavior may cause large differences in belowground bacterial and fungal communities with consequences for belowground microbial diversity, community assembly, and function. Here we combine pre-fire, active-fire, and post-wildfire measurements in a mixed-conifer forest to identify how fine-scale wildfire behavior, unburned refugia, and aboveground forest structure are associated with belowground bacterial and fungal communities nine years after wildfire. We used fine-scale mapping of small (0.9–172.6 m2) refugia to sample soil-associated burned and…
Publication Type: Journal Article
Mapping Delayed Canopy Loss and Durable Fire Refugia for the 2020 Wildfires in Washington State Using Multiple Sensors
Year: 2025
Fire refugia are unburned and low severity patches within wildfires that contribute heterogeneity that is important to retaining biodiversity and regenerating forest following fire. With increasingly intense and frequent wildfires in the Pacific Northwest, fire refugia are important for re-establishing populations sensitive to fire and maintaining resilience to future disturbances. Mapping fire refugia and delayed canopy loss is useful for understanding patterns in their distribution. The increasing abundance of satellite data and advanced analysis platforms offer the potential to map fire…
Publication Type: Journal Article
A novel methodology to assess fuel treatment effectiveness: application to California’s forests
Year: 2025
Background. Fuel treatments are increasingly used to mitigate wildfire risks. Aims. Proposing a novel, scalable and transferable methodology, this study investigates which treatment is (more) effective at a regional scale. Methods. This research evaluates the effectiveness of fuel treatments in California forests using the Fuel Treatment Effectiveness Monitoring (FTEM) database, which provides a binary (yes/no) assessment of treatment efficacy based on a structured subjective evaluation process. Proposed methodology enables scaling up site-specific treatment outcomes to the regional…
Publication Type: Journal Article
Big trees burning: Divergent wildfire effects on large trees in open- vs. closed-canopy forests
Year: 2025
Wildfire activity has accelerated with climate change, sparking concerns about uncharacteristic impacts on mature and old-growth forests containing large trees. Recent assessments have documented fire-induced losses of large-tree habitats in the US Pacific Northwest, but key uncertainties remain regarding contemporary versus historical fire effects in different forest composition types, specific impacts on large trees within closed versus open canopies, and the role of fuel reduction treatments. Focusing on the 2021 Schneider Springs Fire, which encompassed 43,000 ha in the eastern Cascade…
Publication Type: Journal Article
Impact of Thinning Strategy, Surface Fuel Loading and Burning Conditions on Fuel Treatment Efficacy in Ponderosa Pine Dominated Forests of the Southern Rocky Mountains
Year: 2025
Managers across the western US seek effective fuel treatment strategies to mitigate hazardous fuel loads and risks of high severity fire in dry conifer forests. Conventional fuel hazard reduction treatments emphasis reducing canopy fuel continuity and surface fuel loading using an even spaced, thin-from-below approach, with pile or broadcast burning of residual surface fuels. Such treatments often result in forest structures that differ from the historical conditions. Ecological restoration treatments emphasize enhancing structural heterogeneity but may produce less fire-resistant stands…
Publication Type: Journal Article