Research Database
Displaying 1 - 6 of 6
Assessing fuel treatment effectiveness using satellite imagery and spatial statistics
Year: 2009
Understanding the influences of forest management practices on wildfire severity is critical in fire-prone ecosystems of the western United States. Newly available geospatial data sets characterizing vegetation, fuels, topography, and burn severity offer new opportunities for studying fuel treatment effectiveness at regional to national scales. In this study, we used ordinary least-squares (OLS) regression and sequential autoregression (SAR) to analyze fuel treatment effects on burn severity for three recent wildfires: the Camp 32 fire in western Montana, the School fire in southeastern…
Publication Type: Journal Article
The evaluation of meta-analysis techniques for quantifying prescribed fire effects on fuel loadings
Year: 2009
Models and effect-size metrics for meta-analysis were compared in four separate meta-analyses quantifying surface fuels after prescribed fires in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forests of the Western United States. An aggregated data set was compiled from 8 published reports that contained data from 65 fire treatment units. Downed woody and organic fuels were partitioned into five classes, and four meta-analyses were performed on each in a 2 by 2 factorial combination of fixed-effects vs. mixed-effects models with a difference-based metric (Hedges’ d) vs. a ratio-based…
Publication Type: Report
FOFEM: The First-Order Fire Effects Model Adapts to the 21st Century
Year: 2009
Technology is playing an increasingly pivotal role in the efficiency and effectiveness of fire management. The First Order Fire Effects Model (FOFEM) is a widely used computer application that predicts the immediate or ‘first-order’ effects of fire: fuel consumption, tree mortality, emissions, and soil heating. FOFEM’s simple operation and comprehensive features have made it a workhorse for fire and resource professionals who need to be able to predict, assess and plan for fire’s effects. Over the last decade FOFEM has undergone several upgrades as developers continue to improve function and…
Publication Type: Report
ArcFuels: Integrating Wildfire Models and Risk Analysis into Landscape Fuels Management
Year: 2009
That risk from wildfire continues to grow across the United States is not a new problem. Managing forest fuels in the real world—such as thinning and burning prescriptively—to reduce fuel loads have been used effectively to reduce the risk of severe wildfire. These actions have been helped by a variety of software tools that assist managers in planning and evaluating fuel treatments to ensure they are cost effective in terms of impeding the growth of future large, severe wildfires. While many landscape planning tools do a fine job within the scope of their capabilities, the process of fine…
Publication Type: Report
Filling in the Blanks for Prescribed Fire in Shrublands: Developing Information to Support Improved Fire Planning
Year: 2009
By collecting information on fuel loading, fuel consumption, fuel moisture, site conditions and fire weather on fires in a variety of shrubland types, researchers are developing a fuller knowledge of shrubland fire effects. Results are being integrated into the software package CONSUME, a user-friendly software tool for predicting fuel consumption and emissions for fire, fuel and smoke management planning. Shrubland types studied include chamise chaparral in California, big sagebrush in Montana, pine flatwoods in Florida and Georgia, and pitch pine scrub in the New Jersey Pinelands.…
Publication Type: Report
Consume 3.0 -- A Software Tool for Computing Fuel Consumption
Year: 2009
Knowing when, where and how fire should be applied is critical for land managers planning to use fire prescriptively for land management goals, or allowing fires ignited naturally to burn. Myriad variables need to be taken into consideration to determine how fire will consume different fuels. Consume, version 3.0 is a user-friendly software that incorporates the Fuel Characteristic Classification System (FCCS) to predict fuel consumption, pollutant emissions, and heat release. A flexible tool, Consume 3.0 makes these calculations based on fuel loadings, fuel moisture and other environmental…
Publication Type: Report