Research Database
Displaying 121 - 140 of 222
Spatiotemporal dynamics of simulated wildfire, forest management, and forest succession in central Oregon, USA.
Year: 2017
We use the simulation model Envision to analyze long-term wildfire dynamics and the effects of different fuel management scenarios in central Oregon, USA. We simulated a 50-year future where fuel management activities were increased by doubling and tripling the current area treated while retaining existing treatment strategies in terms of spatial distribution and treatment type. We modeled forest succession using a state-and-transition approach and simulated wildfires based on the contemporary fire regime of the region. We tested for the presence of temporal trends and overall differences in…
Publication Type: Journal Article
An empirical machine learning method for predicting potential fire control locations for pre-fire planning and operational fire management
Year: 2017
During active fire incidents, decisions regarding where and how to safely and effectively deploy resources to meet management objectives are often made under rapidly evolving conditions, with limited time to assess management strategies or for development of backup plans if initial efforts prove unsuccessful. Under all but the most extreme fire weather conditions, topography and fuels are significant factors affecting potential fire spread and burn severity. We leverage these relationships to quantify the effects of topography, fuel characteristics, road networks and fire suppression effort…
Publication Type: Journal Article
Mortality predictions of fire-injured large Douglas-fir and ponderosa pine in Oregon and Washington, USA
Year: 2017
Wild and prescribed fire-induced injury to forest trees can produce immediate or delayed tree mortality but fire-injured trees can also survive. Land managers use logistic regression models that incorporate tree-injury variables to discriminate between fatally injured trees and those that will survive. We used data from 4024 ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and 3804 Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees from 23 fires across Oregon and Washington to assess the discriminatory ability of 21 existing logistic regression models and a polychotomous key (Scott…
Publication Type: Journal Article
Climate change and the eco-hydrology of fire: will area burned increase in a warming western USA?
Year: 2017
Wildfire area is predicted to increase with global warming. Empirical statistical models and process-based simulations agree almost universally. The key relationship for this unanimity, observed at multiple spatial and temporal scales, is between drought and fire. Predictive models often focus on ecosystems in which this relationship appears to be particularly strong, such as mesic and arid forests and shrublands with substantial biomass such as chaparral. We examine the drought-fire relationship, specifically the correlations between water-balance deficit and annual area burned, across the…
Publication Type: Journal Article
The normal fire environment—Modeling environmental suitability for large forest wildfires using past, present, and future climate normals
Year: 2017
We modeled the normal fire environment for occurrence of large forest wildfires (>40 ha) for the Pacific Northwest Region of the United States. Large forest wildfire occurrence data from the recent climate normal period (1971–2000) was used as the response variable and fire season precipitation, maximum temperature, slope, and elevation were used as predictor variables. A projection of our model onto the 2001–2030 climate normal period showed strong agreement between model predictions and the area of forest burned by large wildfires from 2001 to 2015 (independent fire data). We then used…
Publication Type: Journal Article
Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA.
Year: 2017
Fire-prone landscapes present many challenges for both managers and policy makers in developing adaptive behaviors and institutions. We used a coupled human and natural systems framework and an agent-based landscape model to examine how alternative management scenarios affect fire and ecosystem services metrics in a fire-prone multiownership landscape in the eastern Cascades of Oregon. Our model incorporated existing models of vegetation succession and fire spread and information from original empirical studies of landowner decision making. Our findings indicate that alternative management…
Publication Type: Journal Article
Economic Opportunities and Trade-Offs in Collaborative Forest Landscape Restoration
Year: 2017
We modeled forest restoration scenarios to examine socioeconomic and ecological trade-offs associated with alternative prioritization scenarios. The study examined four US national forests designated as priorities for investments to restore fire resiliency and generate economic opportunities to support local industry. We were particularly interested in economic trade-offs that would result from prioritization of management activities to address forest departure and wildfire risk to the adjacent urban interface. The results showed strong trade-offs and scale effects on production possibility…
Publication Type: Journal Article
Spatially explicit measurements of forest structure and fire behavior following restoration treatments in dry forests
Year: 2017
Restoration treatments in dry forests of the western US often attempt silvicultural practices to restore the historical characteristics of forest structure and fire behavior. However, it is suggested that a reliance on non-spatial metrics of forest stand structure, along with the use of wildland fire behavior models that lack the ability to handle complex structures, may lead to uncharacteristically homogeneous rather than heterogeneous forest structures following restoration. In our study, we used spatially explicit forest inventory data and a physics based fire behavior model to investigate…
Publication Type: Journal Article
A framework for developing safe and effective large-fire response in a new fire management paradigm
Year: 2017
The impacts of wildfires have increased in recent decades because of historical forest and fire management, a rapidly changing climate, and an increasingly populated wildland urban interface. This increasingly complex fire environment highlights the importance of developing robust tools to support risk-informed decision making. While tools have been developed to aid fire management, few have focused on large-fire management and those that have typically simplified the decision environment such that they are not operationally relevant. Additionally, fire managers need to be able to evaluate…
Publication Type: Journal Article
Climate, wildfire, and erosion ensemble foretells more sediment in western USA watersheds
Year: 2017
The area burned annually by wildfires is expected to increase worldwide due to climate change. Burned areas increase soil erosion rates within watersheds, which can increase sedimentation in downstream rivers and reservoirs. However, which watersheds will be impacted by future wildfires is largely unknown. Using an ensemble of climate, fire, and erosion models, we show that postfire sedimentation is projected to increase for nearly nine tenths of watersheds by >10% and for more than one third of watersheds by >100% by the 2041 to 2050 decade in the western USA. The projected increases…
Publication Type: Journal Article
Adapt to more wildfire in western North American forests as climate changes
Year: 2017
Wildfires across western North America have increased in number and size over the past three decades, and this trend will continue in response to further warming. As a consequence, the wildland–urban interface is projected to experience substantially higher risk of climate-driven fires in the coming decades. Although many plants, animals, and ecosystem services benefit from fire, it is unknown how ecosystems will respond to increased burning and warming. Policy and management have focused primarily on specified resilience approaches aimed at resistance to wildfire and restoration of areas…
Publication Type: Journal Article
Effects of accelerated wildfire on future fire regimes and implications for the United States federal fire policy
Year: 2017
Wildland fire suppression practices in the western United States are being widely scrutinized by policymakers and scientists as costs escalate and large fires increasingly affect social and ecological values. One potential solution is to change current fire suppression tactics to intentionally increase the area burned under conditions when risks are acceptable to managers and fires can be used to achieve long-term restoration goals in fire adapted forests. We conducted experiments with the Envision landscape model to simulate increased levels of wildfire over a 50-year period on a 1.2 million…
Publication Type: Journal Article
The Passing of the Lolo Trail, with an Introduction by Andrew J. Larson
Year: 2016
In 1935, Elers Koch argued in a Journal of Forestry article that a minimum fire protection model should be implemented in the backcountry areas of national forests in Idaho, USA. As a USDA Forest Service Supervisor and Assistant Regional Forester, Koch had led many major fire-fighting campaigns in the region, beginning with the great 1910 fires of Idaho and Montana. He argued in his classic article for wilderness values, and against throwing millions of dollars into unsuccessful attempts to suppress backcountry fires. His article was accompanied by a response from Earl Loveridge, a proponent…
Publication Type: Journal Article
U.S. federal fire and forest policy: emphasizing resilience in dry forests
Year: 2016
Current U.S. forest fire policy emphasizes short-term outcomes versus long-term goals. This perspective drives managers to focus on the protection of high-valued resources, whether ecosystem-based or developed infrastructure, at the expense of forest resilience. Given these current and future challenges posed by wildland fire and because the U.S. Forest Service spent >50% of its budget on fire suppression in 2015, a review and reexamination of existing policy is warranted. One of the most difficult challenges to revising forest fire policy is that agency organizations and decision making…
Publication Type: Journal Article
Insights from wildfire science: a resource for fire policy discussions
Year: 2016
Record blazes swept across parts of the US in 2015, burning more than 10 million acres. The four biggest fire seasons since 1960 have all occurred in the last 10 years, leading to fears of a ‘new normal’ for wildfire. Fire fighters and forest managers are overwhelmed, and it is clear that the policy and management approaches of the past will not suffice under this new era of western wildfires. In recent decades, state and federal policymakers, tribes, and others are confronting longer fire seasons (Jolly et al. 2015), more large fires (Dennison et al. 2014), a tripling of homes burned, and a…
Publication Type: Report
U.S. wildfire governance as social-ecological problem
Year: 2016
There are fundamental spatial and temporal disconnects between the specific policies that have been crafted to address our wildfire challenges. The biophysical changes in fuels, wildfire behavior, and climate have created a new set of conditions for which our wildfire governance system is poorly suited to address. To address these challenges, a reorientation of goals is needed to focus on creating an anticipatory wildfire governance system focused on social and ecological resilience. Key characteristics of this system could include the following: (1) not taking historical patterns as givens…
Publication Type: Journal Article
Impact of anthropogenic climate change on wildfire across western US forests
Year: 2016
Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US…
Publication Type: Journal Article
Clearning the smoke from wildfire policy: An economic perspective
Year: 2016
Wildfires are heating up once again in the American West. In 2015, wildfires burned more than 10 million acres in the United States at a cost of $2.1 billion in federal expenditures. As the fires burned, the U.S. Forest Service announced that, for the first time, more than half of its budget would be devoted to wildfire. And the situation is likely to get worse. Within a decade, the agency estimates that it will spend more than two-thirds of its budget battling fires. In this PERC Policy Series essay, Dean Lueck and Jonathan Yoder use economics to examine wildfire management and the current…
Publication Type: Report
Incorporating Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in California
Year: 2016
The costly interactions between humans and wildfires throughout California demonstrate the need to understand the relationships between them, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires, with previously published estimates of increases ranging from nine to fifty-three percent by the end of the century. Our goal is to assess the role of climate and anthropogenic influences on the state’s fire…
Publication Type: Journal Article
Forest fire policy: change conventional thinking of smoke management to prioritize long-term air quality and public health
Year: 2016
Wildland fire smoke is inevitable. Size and intensity of wildland fires are increasing in the western USA. Smoke-free skies and public exposure to wildland fire smoke have effectively been postponed through suppression. The historic policy of suppression has systematically both instilled a public expectation of a smoke-free environment and deferred emissions through increased forest fuel loads that will lead to an eventual large spontaneous release. High intensity fire smoke is impacting a larger area including high density urban areas. Policy change has largely attempted to provide the…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 5
- 6
- 7
- 8
- 9
- …
- Next page
- Last page