Topic: Mixed-Conifer Management
Displaying 11 - 20 of 77
High-severity fires and short-interval reburns strongly influence forest structure and composition and may overwhelm forest ecosystem resilience and catalyze persistent shifts to non-forest conditions. Recent increases in annual area burned and severity in the western United States (US)…
Dry conifer forests in the western US historically experienced frequent fire prior to European American colonization. Mean fire return interval ranged from about 5–35 years, with the majority of fires burning at low-to-moderate severity. The arrival of European Americans initiated notable…
Climate warming, land use change, and altered fire regimes are driving ecological transformations that can have critical effects on Earth's biota. Fire refugia—locations that are burned less frequently or severely than their surroundings—may act as sites of relative stability during this period…
The North Bay area of California is a populous and ecologically diverse area that has experienced significant changes in the past century, as well as a series of recent wildfires, after over a century of fire suppression practices. While much research has been conducted quantifying drivers and…
Patterns of spatial heterogeneity in forests and other fire-prone ecosystems are increasingly recognized as critical for predicting fire behavior and subsequent fire effects. Given the difficulty in sampling continuous spatial patterns across scales, statistical approaches are common to scale…
Background In California’s mixed-conifer forests, fuel reduction treatments can successfully reduce fire severity, bolster forest resilience, and make lasting changes in forest structure. However, current understanding of the duration of treatment effectiveness is lacking robust empirical…
Frequent-fire forests were once heterogeneous at multiple spatial scales, which contributed to their resilience to severe fire. While many studies have characterized historical spatial patterns in frequent-fire forests, fewer studies have investigated their temporal dynamics. We investigated the…
Although fire is a fundamental ecological process in western North American forests, climate warming and accumulating forest fuels due to fire suppression have led to wildfires that burn at high severity across larger fractions of their footprint than were historically typical. These trends have…
Ecological disturbance regimes across the globe are being altered via direct and indirect human influences. Biodiversity loss at multiple scales can be a direct outcome of these shifts. Fire, especially in dry forests, is an ecological disturbance that is experiencing dramatic changes due to…
Pagination
- Previous page
- Page 2
- Next page