Skip to main content

landscape ecology

Displaying 1 - 3 of 3

Evidence for scale‐dependent topographic controls on wildfire spread

Year of Publication
2018
Publication Type

Wildfire ecosystems are thought to be self‐regulated through pattern–process interactions between ignition frequency and location, and patterns of burned and recovering vegetation. Yet, recent increases in the frequency of large wildfires call into question the application of self‐organization theory to landscape resilience.

Modeling wildfire regimes in forest landscapes: abstracting a complex reality

Year of Publication
2015
Publication Type

Fire is a natural disturbance that is nearly ubiquitous in terrestrial ecosystems. The capacity to burn exists virtually wherever vegetation grows. In some forested landscapes, fire is a principal driver of rapid ecosystem change, resetting succession ( McKenzie et al. 1996a ) and changing wildlife habitat (Cushman et al. 2011 ), hydrology ( Feikema et al.

Representing climate, disturbance, and vegetation interactions in landscape models

Year of Publication
2015
Publication Type

The prospect of rapidly changing climates over the next century calls for methods to predict their effects on myriad, interactive ecosystem processes. Spatially explicit models that simulate ecosystem dynamics at fine (plant, stand) to coarse (regional, global) scales are indispensable tools for meeting this challenge under a variety of possible futures.