Skip to main content

fire behavior

Displaying 71 - 80 of 101

Crown fire behavior characteristics and prediction in conifer forests: a state-of-knowledge synthesis

Year of Publication
2013
Publication Type

Joint Fire Science Program (JFSP) project 09-S-03-1 was undertaken in response to JFSP Project Announcement No. FA-RFA09-0002 with respect to a synthesis on extreme fire behavior or more specifically a review and analysis of the literature dealing with certain features of crown fire behavior in conifer forests in the United States and adjacent regions of Canada.

A Land Manager's Guide for Creating Fire-resistant Forests

Year of Publication
2013
Publication Type

This publication provides an overview of how various silvicultural treatments affect fuel and fire behavior, and how to create fire-resistant forests. In properly treated, fire-resistant forests, fire intensity is reduced and overstory trees are more likely to survive than in untreated forests. Fire-resistant forests are not “fireproof” – under the right conditions, any forest will burn.

Capturing Fire: RxCadre Takes Fire Measurements to a Whole New Level

Year of Publication
2013
Publication Type

Models of fire behavior and effects do not always make accurate predictions, and there is not enough systematically gathered data to validate them. To help advance fire behavior and fire effects model development, the Joint Fire Science Program is helping fund the RxCADRE, which is made up of scientists from the U.S.

Models for predicting fuel consumption in sage-brush-dominated ecosystems

Year of Publication
2013
Publication Type

Fuel consumption predictions are necessary to accurately estimate or model fire effects, including pollutant emissions during wildland fires. Fuel and environmental measurements on a series of operational prescribed fires were used to develop empirical models for predicting fuel consumption in big sagebrush (Artemisia tridentata Nutt.) ecosystems.

Effects of salvage logging and pile-and-burn on fuel loading, potential fire behavior, fuel consumption and emissions

Year of Publication
2013
Publication Type

We used a combination of field measurements and simulation modelling to quantify the effects of salvage logging, and a combination of salvage logging and pile-and-burn fuel surface fuel treatment (treatment combination), on fuel loadings, fire behaviour, fuel consumption and pollutant emissions at three points in time: post-windstorm (before salvage logging), post-salvage logging and post-surfa

Optimising fuel treatments over time and space

Year of Publication
2013
Publication Type

Fuel treatments have been widely used as a tool to reduce catastrophic wildland fire risks in many forests around the world. However, it is a challenging task for forest managers to prioritise where, when and how to implement fuel treatments across a large forest landscape. In this study, an optimisation model was developed for long-term fuel management decisions at a landscape scale.

Current status and future needs of the BehavePlus fire modeling system

Year of Publication
2013
Publication Type

The BehavePlus Fire Modeling System is among the most widely used systems for wildland fire prediction. It is designed for use in a range of tasks including wildfire behaviour prediction, prescribed fire planning, fire investigation, fuel hazard assessment, fire model understanding, communication and research.